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1.0 ABSTRACT

This report describes an attempt to design by analytic means a class of
axisymmetric bodies having low drag in incompressible flow for the case where
the boundary layer is fully turbulent over the entire body. The drag is to
be made small solely by proper shaping of the body, and the drag coefficient to
be winimiced is that based on a reference area equal to the two-thirds power
of the body's volume. A comparison of various drag-calculation methods shows
that the Truckenbrodt formula, which expresses drag as an integral of a power
of the potential-flow surface velocity, is sufficiently accurate, and this
formula is adopted as the chief analytic tool. Among the consequences of this
choice is that bodies with low drag at one Reynolds number have low drag at
all. Drag performances of various types of bodies are compared, including
those of "cavitation shapves" derived from a new inverse potential-flow program.
Two-dimensional optimization studies are carried out using an integral formula
for drag analagous to that of Truckenbrodt. The principal conclusionis that
the drag coefficient is not very sensitive to body shape and thus that no
significant drag reductions can be obtained from shaping alone.
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4.0 PRINCIPAL NOTATION

area enclosed by the pofile curve of a two-dimensional body

drag coefficient; based on two-thirds power of volume vor axisymmetric
bodies; based on square root of A for two-dimensional bodies

skin friction coefficient

drag; used in some figures for body diameter

ratio of boundary-layer displacement thickness to momentum thickness
integral defined by (13)

integral defined by (19)

body length

Reynolds number based on body length

radial coordinate, distance from symmetry axis
reference area equal to two-thirds power of body volume
potential-flow velocity on the body surface

free~-stream velocity

velocity component in boundary layer. On the body it is parallel to
the local body surface., In the wake it is parallel to the free-stream
direction

coordinate parallel to free-stream direction. For axisymmetric flow
the x-axis is the symmetry axis.

in saction 6.0; denotes distance in the boundary layer measured normal
to the body surface. In section 7.1 and in all two-dimensional analysis
it denotes a coordinate perpendicular to the free-stream direction

slope angle of thepofile curve of the body with respect to the x-axis
boundary-layer thickness

boundary-lzyer displacement thickness

boundary-layer momentum thickness

fluid density — a constant

momentum area

momentum area of the wake far downstream
5




5.0 INTRODUCTION AND SUMMARY

This report presents resuits of a study whose object has been the
design of axisymmetric bodies having low drag at high Reynolds number. More
precisely the problem may be stated as follows. Consider an axisymmetric body
at zero angle of attack in an incompressible flow whose Reynolds number is so
large that the boundary layer on the body may be taken fully turbulent over the
entire length of the body. Let the drag coefficient he based on a reference area
defined as the two-thirds power of the body's volume. It is desired to mini-
mize this drag coefficient solely by proper shaping of the body without resort
to suction, compliant surfaces, additives, etc., Moreover, this minimization
should be performed for a range of Reynolds number. While the rroblem is easy
to state, it is difficult to formulate in a marner that admits of fruitful
analysis. Accordingly, the present work has consisted of several investiga-
tions designed to shed light on the mechanisms jeading to low dray and aiso
to determine a number of bodies having as low a drag as possibie. The chief
emphasis has been on the axisymmetric problem, but the related two-dimensional
problem has been considered also. The latter is more tractable in some ways,
and the results obtained have definite implications for the axisymmetric case.

The first part of the study concerns methods of computing the Grag o an
axisymmetric body (section 6.0). The ideas and formulas for calculating drag
from a momentum deficit approach are presented. These formula- are imple-
mented with two different types of bourdary-layer calculation methods and also
with a set of simplifying assumptions that eliminates the need for an explicit
boundary-layer calculation and calculates drag from an integral over the body
oy a power of the potential flow velocity. Drags computed by all three methods
are compared with experimental drags obtained for a set of bodies in water.

It is concluded that the simplified integral method of computing drag is

sufficiently accurate and so much simpler than the others that it is used in

all subsequent calculations. A particularly desirable feature of this method

is the fact that the Reynolds number enters only in a multiplicative factor. )
Thus, if a particular body has the lowest drag at one Reynolds number, it has

the lowest drag at all Reynolds numbers, and the investigation need not concern

itself with Reynolds number directly.




The drag performance of a wide variety of bodies has been compared using
the simplified integral drag formula (section 7.0). The drag coefficient for
a general prolate spheroid can be written down analytically. The curve of
drag noefficient versus fineness ratic for prolate spheroids has proven a very
useful device for correlzting drags for all bodies, because all "good" shapes
have drags that plut near this curve. The curve has a shallow minimum, and
thus there is a preferred range of fineness ratio from about three to four.
Oddly. the simplified integral drag formula does not strictly apply to prolate
spheroids, from which the flow is presumed to separate at their blunt aft ends.
However, the separation can be removed by a small amount of aft streamlining or
"boattailing" with a very small effect on drag. 1In any case the unseparated
"good" bodies have relatively low drags that essentially follow the curve.

Unlike certain two-dimensional applications, there is no information on
what properties of the body shape, its pressure distribution, or its skin-
friction distribution lead to low drag. Thus the use of inverse boundary-layer
or potential-flow methods is of limited value in the present problem. Never-
theless, some investigation along this line has been carried out. In partic-
ular "cavitation" bodies having extensive regions of constant pressure were
studied on the ground that they should have relatively low maximum velocities
and thus possibly Tow values of the drag integral. Unfortunately, this proved
not to be true (section 7.3).

In implementing the above investigation a new method of solution for the
axisymmetric potential flow problem was discovered and developed. This solu-
tion, which is applicaole to completely general shapes, is based on a conformal
transformation of the body to a circle and obtains the solution as a series of
Chebyshev and Legendre polynomials. Both direct and inverse problems can be
treated. While the application of this procedure to the low-drag problem
appears to be of limited usefulness, the development of such a method is felt
to be importunt in itself.

Two-dimensional analysis has been used in section 8.0 to attempt to
determine shapes that minimize the drag coefficient calculated from the
simplified drag integral. For this study the two-dimensional drag coefficient
has been based on the square root of the area enclosed by the body profile as




the closest analogy to the normalization based on the two-thirds power of the
volume that is used in the axisymmetric case. Slender-body theory is shown

to be inadequate. General solutiors based on conformal transformations yield
bodies having minimum drag coefficients. However, the drags thus obtained are
only very slightly less than those for simple bodies selected at random.
Probably the same is true for the axisymmetric problem.




6.0 DIRECT DRAG CALCULATION FOR AXISYMMETRIC BODIES

6.1 Theory for Drag Calculation Based on Momentum Deficit

Because the straightforward calculation of drag by integration of surface
pressur. and skin friction turns out to be inaccurate [1], the drag of a body
must be obtained by considering the deficit of momentum far downstream in the
wake. The basic analysis, which is given in [2], is merely outlined here.

Consider an axisymmetric body at zero angle of attack as shown in Fig. 1.
The boundary layer on the body continues into the wake and far downstream
there is a deficit of momentum due to viscous retardation of the flow along
the body surface. From momentum considerations the drag of the body is given

by

o

8
D = 2mpo / u(U_ — u)rdr = 2xp f u(U_ — u)rdr (1)
0 0

where p is fluid density (a constant in the present study), U,6 is free
stream velocity, u 1is the iocal velocity component parallel to the symmetry
axis {x-axis), r is radial distance from the symmetry axis, and & is the
radius of the wake. The integral in (1) is taken in an x = constant plane
which for convenience is taken as far downstream. The momentum area cf the
wake far downstream is defined as

j%; )rd. (2)
0

so that
D = oU2x_ (3)
the drag coefficient is
gty = 2 (a)
(V2)b’s S
9




where S 1is some reference area, which in the present study is equal to the
two-thirds power of the volume of the body. It is desired to compute this
drag in terms of quantitiec evaluated on the body, and this is where the first
approximation must be introduced.

The momentum thickness of the boundary layer at any point of the body is
6 .
= [ ufy w4+ X
8 ,{U(] U)(\!+rc05a)dy (5)

In (5) the various quantities have their customary definitions, which are
somewhat different than those of equation (1), which applies to a Jocatiun in
the wake. Specifically, y denotes distance normal to the body surface,
is boundary-layer thickness, u is ‘he velocity compenent parallel to the
surface, and U 1is the value of v for y = §. Moreover, r 1is radial
distance from the symmetry axis to a point on the body surface, and o 1is the
local slope angle of the surface with respect to the symmetry axis. The
momentum area of the boundary layer at any lecation on the body is defined as

[=23

x = 2ure (6)
Finally define
* ,
H = %— (7)

where &* is the usual boundary-layer displacement thickness
> /
g% = j (1 —.5—)\1 +-yr—cos a) dy (8)
)

Now the required approximation is introducea. Young's analysis [2] leads to the
relationship

H+5)/2
X,= x(l-‘{—‘f (9)

(-]

10



where x, U, and H in (9) are all evaluated at a particular location on
the body — usually "near" the trailing edge. This gives for the drag
coefficient

anpe (u \(H¥50/2

==~ (U:) (10)
Granville [3] has an alternate form of (9) which gives as an alternative to
(30) the form

(7/8)H+(17/8)
¢p = 12 (5") an

a0

However, for most of the present work (10) has been used. The various quan-
tities appearing in (10) must be evaluated by means of a boundary-layer calcu-
lation. ODuring the present study three boundary~layer methods were considered,
one of which evaluates these quantities directly in terms of potential-flow
quantities.

6.2 Finite-Difference Bcundary-Layer Method

The most general and elaborate type of boundary-layer method is that which
solves a partial differential equation for flow in the boundary layer. The
numerical solution is effected by some type of finite-difference scheme,
usually beginning with the front stagnation point and proceeding downstream
along tne body. The calculation terminates if separation is encountered but
othe~ /ise traverses the entire body. In the present study of low-drag bodies
it is presumed that all good bodies will indeed have unseparated boundary
layers, so that the above is not a serivus restriction. In fact one advantage
of the finite-difference method is that it predicts separation (or its absence)
which some other methods do not. For a laminar boundary layer such a technique
may be made numerically exact. However, for a turbulent boundary layer an
empirical or semi-empirical "closure" condition is required that usually takes
the form of an "eddy-viscosity" law. This assunption renders the calculation
approximate. A variety of closure conditions have been proposed. The method
used in this study is that due to Cebeci and Smith. Details of the procedure
are given in [4].




According to the theory of section 6.1, the drag of a body is obtained

by evaluating (10) at the downstream end of the body. However, (10) can be
evaluated at any point of the body. If this 1s done and the results plotted
versus position along the body, certain modifications in the use of the formula
become evident. There are three different types of cases; exampies of which
are shown in figures 2, 3 and 4. Figure 2 shows the unambigucus case where

the drag coefficient is a smooth function of position ail over the body, and
extrapolating it to the aft end of the body presents no problem. This extrapo-
lated value is then taken to be the drag of the body. More common, however,

is the type of case shown in Figure 3, where the calculated drag coefficient
rather suddenly begins to increase more rapidly a short distance ahe.d of the
aft end of the body — about 90% of body length in figure 3. Extrapolating

the calculated curve for such a case to the aft end of the body gives a value
of drag that is far too large. The most effective procedure appears to con-
sist of extrapolating to the aft end from the smooth portion of the curve
upstream of the "break" as shown in figure 3. The third type of case is that
shown in figure 4. It is characterized by having a calculated drag coefficient

that is not monotonically increasing. Instead there is a maximum a short distance

ahead of the aft end of the body, and the drag decreases downstream of this
point. The only reasonable procedure is to use the maximum computed value of
drag as the drag of the body.

Despite the somewhat striking differences in the procedure for estimating
drag in the three cases, there is no real difference in the accuracy of tie
results as judged by comparison with experimental values. The "nice" case of
figure 2 agrees with experiment no better than the "difficult" case of figure 3.

6.3 Momentum-Integral Boundary-Layer Method
‘ Momentum-integral boundary-layer metheds are characterized by the fact
that they use certain assumptions, such as the form of the velocity profile
in the boundary iayer, to reduce the partial differential equation of
boundary-layer flow to an ordinary differential equation (or set of such
equations) along the body surface. Patel [5] has developed a method of this
type for calculating thick axisymmetric boundary layers and Nakayama and Patel
[6] have used this method together with Granville's formula (11) to calcu-
late drag. As in the third type of case of sectior 6.2, the drag calculated

12




in this way does not increase monotonically along the body hut has a maximum,
which is taken as the drag of the body.

6.4 Simplified Integral Drag Calculation

The drag calculation methods of the previcus two sections use & boundary-
layer calculation procedure to determine the quantities that enter into the
drag formula (10). The boundary-layer calculation procedures are approximate
but are still fairly elaborate and require computer programs for their imple-
mentation. Moreover, the drag calculation must be repeated for each Reynolds
number of interest. By making certain additicnal approximations the quantities
in (10) can be obtained directly, and thus the need for a boundary-layer calcu-
lation method can be eliminated entirely. In the present study this has been
done using the theory of Truckenbrodt [7].

For the case of a fully turbulent boundary layer the theory of [7] gives
the momentum thickness at a point on the body as

L1/7

= ———r 1 (12)
T r{u/u )

where L is body length, Ce is total skin-friction coefficient, and where

L= f (5:)]0/3 r'/as " (13)

where s denotes arc length along the body profile curve, and where the
range of integration is from the front stagnation point to the point where
9 1is to be evaluated. :f this is used in (10) the drag coefficient is

C 21\'L1l7 f (T)(H 1)/2 (14)
Since H > 1 it is evident that if the potentiai-flow velocity is used in
(14;, then Cp = 0 at the aft end of the body. However, since C, is never
negative, it obviously has a maximum value, which generally occurs a short
distance ahead of the aft end of the body just as for the methods of sections
6.2 and 6.3. This maximum value is taken as the drag of the body.

13




Calculations obtained from the method of section 6.2 for a large number
of bodies, have shown that at the location where (14) is a maximum
y \(H=1)72
0.975 < (U“) < 1.0 (15) |

for all bodies. Thus it is consistent with the other approximations that have
beer made to set this quantity equal to unity and to write the drag as

Co=g'“'sl"'”‘7‘cf f(

body

10/3 6/7
) 16 4 (16)

—

J

a

(- ]

where the integral is over the entire body profile. The Reynolds number Re
enters only in the skin-friction coefficient Ce which the Prandt1-Schlichting
relation [8] gives as

0.455
Ce = : (17)

Equation (16) is the simplified integral drag formmula, which obtains
drag directly from the potential-flow velocity distribution. The fact that
the Reynolds number enters only in a multiplicative factor means that if one
shape has lower drag than another at one Reynolds number, it will have lower
drag at all Reynolds numbers. In particular an optimum shape, if it can be
found, is independent ¢f Reynolds number.

6.5 Comparison of the Methods
The relative accuracies of the three methods for computing drag in incompres-

sible flow have been evaluated by comparing calculated drags with the highly
accurate experimental results obtained by Gertler for a series of bodies of revo-
lution in a towing tank [9]. For these comparisvns eight of the 20 bodies of

[9] were selected in such a way that the complete ranges of fineness ratio and
drag values are well represented.

First the simplified integral formula (16) is compared with the result
of using the finite-difference boundary-layer method of section 6.2 in the
basic drag formula (10). Figures 5 and 6 compare these two metheds with .

14




experiment for Reynolds numbers of 10 million and 20 million, respectively.
The simplified integral formula (16) is definitely more accurate. Its RMS
errors are approximately 60% of those obtained by the use of the finite-
difference boundary-layer method. Formula (16) is thus much to be preferred
because of its simplicity.

Next the momentum-integral boundary-layer method of section 6.3 used with
Granville’s drag formula (11) is compared with the simplified integral formula
(16) and with the result of using the finite-difference boundary-layer method
of section 6.2 in the basic drag formula (10). These comparisons, which are
shown in figures 7 and 8, respectively, are for the same set of bodies from
[9] at a Reynolds number of 20 million. The calculation based or the momentum-
integrai is definitely the mo-' accurate of the three methods studied. Its
RMS error is abuut 57% of that obtained by the simplified integral formula and
only 35% of that obtained using the finite-difference boundary-layer method,

Despite the above finding the simplified integral formula (16) has been
used for drag calculation in this study. One important consideration was
that the momentum-integral method was not obtained by the authors until rather
late in the study. The other important factor is the greater simplicity of
formula (16), including the fact that Reynolds number need not be considered
explicitly in the investigation. Despite the somewhat inferior accuracy of
formula (16), it seemed uniikely that any overall conclusions drawn on the
basis of this formula would be drastically overturned by use of the momentum-
integral method. The finite-difference method has been applied after the fact
to the best bodies to verify that their boundary layers are unseparated.

15




7.0 INVESTIGATION OF LOW-DRAG SHAPES USING THE
SIMPLIFIED INTEGRAL DRAG CALCULATION

7.1 Comparison of Two-Dimensional and Axisymmetric Formulas

Although the principal interest in the present study is axisymmetric
flow, two-dimensional flow has been considered also, because it is simpler
from some standpoints and it should be at liuast qualftatively similar. In
fact the similarities between the two-dimensional and axisymmetric cases can
most easiiy be seen by examining the two forms of the simplified drag integral.
Spence [10] reduces the drag of a two-dimensional body to an integral of the
potential-flow veiocity in a manner analogous to the theory of Truckenbrodt,
quoted in section 6.4, for axisymuetric bodies., The two-dimensional di-ag coef-
ficient must be normalized with respect to a reference length that is as
analagous as possible to the reference area (two-thirds power of volume) used
for the axisymmetric drag coefficient. The length chosen is the square root
of the area enclosed by the profile curve of the body. With these choices
the drag coefficient for both axisymmetric and two-dimensional bodies may

be written
- p
_/IF&"d%]

i r
J{;qu

|
where x and y denote, respectively, distance parallel and perpendicular to

the free stream. As before U is surface velocity, s is arc length, and
the integrals are over the entire body. The expenents are

Cp = (const) (18)

Axisymmetric Two-Dimensional
m 10/3 4
n 7/6 0
P 6/7 5/6
q 2 1
r 2/3 1/2
16



7.2 Prolate Spheroids and Pointed Shapes

The function to be adjusted to obtain the minimum is of course the body
shape y(x). Some direct attacks on the minimization problem are outlined in
subsequent sections. In this section attention is concentrated on an attempt
to find good shapes simply by using (16) to calculate results for a variety of
bodies.

The drag coefficient of (16) can be obtained analytically for prolate
spheroids as a function of fineness ratio. This function is graphed in
Figure 9. Urag values are shown for a Reynolds number of 10 million, but at
other Reynoids numbers only the level of the curve is changed not its shape.
It can be seen that there is a shallow minimum at a fineness ratio somewhat
greater than three. This curve has proved quite useful in analyzing bodies,
because it turns out that on the basis of approximately 50 calculations most
good bodies give drags that plot very near this curve. It might be argued
that since prolate spheroids have blunt aft ends near which the boundary
layer separates, the curve of figure 9 is not meaningful. To investigate this
several prolate spheroids were fitted with conical boattails. Equation (16)
was evaluated for these bodies and the results lie close to the basic curve
as shown in figure 9. Absence of separation was verified for these bodies
by finite-difference boundary-layer calculations. By way of example, figure
10 shows results for a 40%-thick prolate spheroid that was fitted with a
conical boattail to produce a body of fineness ratio 3.25, the flow about which
is effectively unseparated. For fineness ratios below about 3, absence of
separation could not be obtained, and it is concluded that the curve of
figure 9 is only of theoretical interest to the left of this point. The cal-
culated drags for the Gertler bodies (figure 5) are also shown in figure 9 and
they also lie on the basic curve. The calculations imply a preferred range
of fineness ratio from 3 to 4. Experimental results may alter this conclusion
somewhat — probably in the direction of increased fineness ration.

7.3 Constant-Pressure Bodies Derived from an Inverse Procedure
Since the integrand of the simplified drag integral (16) depends on a
higher power of surface velocity than of local body ordinate, it was hypothe-
sized that the search for low drag bodies might better be conducted in (
terms of velocity distribution rather than in temms of shape directiy. That

17
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is, it was thought that certain velocity distributicns might have low values

of drag associated with the corresponding shapes. However, no general principles
of this sort could be formulated. It does appear from the form of {16) that
keeping the maximum velocity as small as possible should be desirable. This
leads to consideration of velocity distributions which are constant at their
maximum value over much of the body, i.e., "cavitation shapes." Unfortunately,
it turns out that their performance is not much different from prolate spheroids
(see below).

Suppose a surface velocity distribution can be selected by some criterion,
Determination of the body shape corresponding to this velocity distribution
requires an inverse potential-flow method. When the present study was initiated
the development of such a method for the axisymmetric case was an unsolved
problem. Early in the study [11] appeared, which solves the inverse problem
by iterative use of a direct method. As part of the present studv a naw type
of direct-and-inverse sclution was developed for the problem of axisymmetric
potential flow. The method of solution depends on conformal transformation
and a series soiution in terms of Legendre and Chebyshev polynomials. A
detailed presentation is contained in Appendix A,

Based on the reasoning outlined abeve, "cavitation shapes" were determined
by both the method of [11] and that of Appendix A. The velocity distributions
that were called for had extensive regions of constant velocity. Because of
the details of the inverse procedures the bodies that resulted had velocity
distributions that were almost, but not quite, constant. Figure 1] shows a typ-
ical result.

Figure 12 shows drag coefficients computed by (16) for nine bodies designed
to have virtually constant maximum-velocity regions. Four were obtained directly
by modifying elliptic contours. The other five are products of the inverse
potential-flow methods mentioned above. Four of the five have pointed aft ends
similar to the one shown in Figure 11. The fifth, whictk has the lowest drag of
all, is symmetric fore-and-aft and has a blunt aft end. Flow about the poirted
shapes is unseparated. From Figures 9 and 12 it may be concluded that the per-
formance represented by the curve for prolate spheroids can actually be obtained
but that shapes with sigrificantly lower drag are difficult to find.

18
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8.0 APPLICATION OF MINIMIZATION TECHNIQUES TC THE TwWO-DIMENSIONAL
LOW-DRAG PROBLEM BASED ON THE SIMPLIFIED IMTEGRAL FORMULA

8.1 Statement of the Problem

One of the principal reasons for concentrating ot the simplified integral
formula for drag is that application of a rigorous minimization tachnique to
this integral appears toc be at least a possibility. According to this formula
a body with minimum drag at one Reynolds number has minimum drag at all Reynolds
numbers. For simpiirity the initial work on minimization as done Tor the two-
dimensional problem. The results obtained were not sufficiently 2ncouraging to
justify much additional effort for the axisymmetric case.

The problem is to select a shape y{x) 1in such a way that the two-
dimensional form of (18) is minimized. Aiternatively, the function y(x) must
be selected to minimize the integral

3+« 085 = (const) _/ uas (19)
body

subject to the constraint t'at the integra:

A = f ydx (20
body

take on a specified value. This is not a well-defined calculus-of-variations
problem. The difficulty is that, while U depends on y 1in the sense that
given a complete body shape y(x) then U(x) can be determined, there is no
relation between local values of U and .

8.2 Slender-Body Theory
For sufficiently slender bodies the standard aerodynamic techniques yielo q
the following relationship

1
A a./' (U—1)(1 - 2¢t)%dt — (21)

0 WVi-(0-2)° ‘
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while (19) becomes
1
4
J=jUdt (22)
0
Now standard calculus-of-variations techniques can be applied. The result is

[1 - (1 - 2t)%]

U= (Const) Y76 (23)

This velocity has fore-and-aft symmetry with a 1/6-power singularity at the ends.
Cleariy the theory has broken down. However, to investigate the possibility
that the theory has indicated certain desirable features for low-drag, calcula-
tions were performed for bodies having "saddleback" velocity distributions
(fore-and-att peaks of finite size with a lower velocity region in the middle).
These bodies consist of semicirclies at the front and rear joined by a constant-
thickness region, whose length may be varied to give different fineness ratios.
Results are discussed in section 8.4 below where the bodies are identified as
"circie-flat® bodies. They turned out to have relatively high drag. Thus,
slender-body theory was abandoned.

8.3 A General Procedure Based on Conformal Mapping

In two-dimensional potential flow the complete solution for both direct
and inverse problems can be expressed in terms of the coefficients of the con-
formal mapping that maps the body in question to the unit circle. This fact
permits a rather general "brute force" solution to the minimization problem.

Let 2z(z) be the conformal mapping that carries a body shape in the z-plane
to the unit circle in the z-plane. Then it can be shown that the mapping
derivative must satisfy a number of constraints and that a general expression
consistent with these constraints can be written down quite simply. This topic
is discussed in more detail in appendices A and B, where the general formula in
questton, viz.

‘I-T]/W 1-12/" a a
d 1 ] 1,2
E-0-0 7 0T et ge)
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is justified. The angles Ty and T are twice the cone angies of the fore and
aft end of the body, respectively. Equation (24) defines the mapping coeffic-
ients a_ which must be real for application to bodies of revolution by reasor

n
of the symmetry. Also closure of the profile requires that a, = (12 —-T])/w.

Now both the surface velocity on the body and the area enclosed by the
profile can be expressed in temms of these coefficients, and thus so can the
drag coefficient based on square root of area (18). The most general case of
(24) has not been investigated fully, and a detailed account of the various
complications is the subject of appendix B. However, for a blunt body
(r] =1y = n) certain important numerical simplifications occur which enable
this case to be computed rather simply. Specifically the drag coefficient for
such a body can be written

' .4 lsse
- L sin’ ud
CD = (const) Era:ylf m;;‘-’-‘g (25)
where
2 2 1/2
) 2 %3 24
G(an) = (1 —82—2—*3——...) (26)
and
H(w,an) =[(1 + a, cos 2w + ag cos 3w + ...)2 +
2 3/2
(a2 sin 2w + a5 sin 3w + eee)?] (27)

A very simple numerical searching scheme has been developed for finding minimum
values of a function of a finite number of real variables which has an obvious
application to the problem of minimizing the C, given by (25) and (26) (see
appendix B, section B6). Notice that this is a minimum problem in n variables,
not a calculus of variations problem.‘ If only a, is retained, the body shape
is an ellipse and the procedure gives the analytically correct thickness ratio
for minimum drag coefficient. Using a large number of terms gives the result
that the optimum shape is actually pointed, because the body obtained has its
infinite slope only in a very small region of the fore and aft ends, i.e.,

the procedure is trying to give a pointed shape. Figure 13 shows the optimum
“blunt" body, which appears pointed. Moreover, the coefficients a, of (26)

2!
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for the optimum body appear to be asymptotically equal to those of an expansion
for a particuiar fractional power. The indications are that the true optimum
has an equation of the form
1=t/7

g . (1 - lf) (28)
which is the simplest form of (24), namely the one with all a, = 0. The equal
fore and aft angles 1t appear to be approaching approximately =/3, i.e., 30°
cone angle (see appendix B, section B7). The near-optimum body of figure 13
achieves a drag reduction over the optimum ellipse of 0.15% — a very interesting
and discouraging result.

It appears that by using the new type of axisymmetric solution described
in appendix A, an analogous minimization procedure could be applied to the
axisymmetric case. However, all the indications are that only very small
reductions in drag could be obtained.

8.4 Miscellianeous Two-Dimensional Results

While the emphasis ofthe present study is on axisymmetric bodies, some
two-dimansional cases have been investigated also. Most, but not all, of these
cases are connected with the optimization studies of the preceeding sections.
By analogy with the axisymmetric case, all two-dimensional bodies considered
have a right-and-left symmetry with respect to the flow direction and are,
of course, nonlifting.

Figure 14 summarizes the drag coefficients obtained for various two-
dimensional bodies from the integral formula (18). The curve of figure 14
represents the analytic expression to which (18) reduces for the case of
ellipses. The drag of the "near-optimum" body of figure 13 is shown, as well
as drags for a set of "circle-flat" bodies that have "saddleback" velocity
distributions. As discussed in section 8.2 these bodies were suggested by
results from slender-body theory, but it can be seen that their drags are
significantly higher than ellipses.

Figure 14 also shows drags for a series of symmetric struts that were
designed to have zero skin friction over their aft portions [12]. Despite
this their total drag coefficients, as calculated from (18), are higher than

those of ellipses. 22




9.0 CONCLUSIONS

In computing the drag of an axisymmetric body with fully turbulent
boundary layer in incompressible flow the momentum-integral method of
Nakayama and Patel [6] is censiderably more accurate than either the
method based on a finite-difference boundary-layer calculation [4] or

the simplified integral formula based on the analysis of Trurkenbrodt [7].
0f the latter two methods the simplified integral formula is more accurate
than the current finite-difference method and much easier to use.

If the simplified integral formula is used to compute drag, the following
conclusions can be drawn for axisymmetric bodies with fully turbulent
boundary layers in incompressible flow:

a. A shape having the Towest drag, a one Reynolds number has the lowest
drag at all Reynolds numbers.

b. Shapes with fineness ratios in the range three to four have the
lowest drag coefficients based on tne two-thirds power of volume.

¢. Drag coefficient is insensitive to shape and no shape has been found
with significantly lower drag than a boattailed prclate spheroid.
A more accurate drag calculation might modify these conclusions
slightly but would probably not drastically revise them.

The two-dimensional analogue of the simplified integral formula for drag

can be rigorously optimized in terms of mapping coefficients to find a

"near optimum" shape that supposedly has the lowest possible. Unfortunately
the shape so determined has a drag coefficient almost undetectably less

than bodies selected at random.

Accurate and very rapid solutions to both the direct and the inverse
problems of axisymmetric potential flow can be obtained using the expan-
sion method of appendix A.
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Figure 5. Comparison of drags computed by the finite-difference boundary-
layer method and the simplified integral method with experimental
data for a series of eight bodies at a Reynolds number of 10 miilion.
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Figure 6. Comparison of drags computed by the finite-difference boundary-

layer method and the simplified integral method with experimental
data for a series of eight bodies at a Reynolds number of 20 milifon,
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Comparison of drags computed by the momentum-integral boundary-layer
method and the simplified integral method with experimental data for
2 series of eight bodies at a Reynolds number of 20 million.
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Figure 8. Comparison of drags cemputed by the momentum-integral boundary-layer
method and the finite-difference boundary-layer method with experi-

mental data for a series of eight bodies at a Reynolds number of >
20 million.
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APPENDIX A
A GENERAL ANALYTICAL METHOD FOR AXISYMMETRIC
INCOMPRESSIBLE POT:NTIAL FLOW

ABSTRACT

A method is presented for calculating the flow field about bodies of
revolution in incompres;ible potential flow as a sequance of elementary analytic
functions (Fourier, Chebyshev and Legendre). For the cases of greatest inter-
est to practical engineering (cusp and blunt trailing edges) comparison with an
existing highly accurate numerical method shows that convergence is good. Only
ten terms are required to give adequate accuracy for negligible computer usage
on bodies with much more character than usually encountered. The theory can be
used for design (inverse) operation to produce body shapes asseciated in some
least squares sense with a desired input velocity. It is shown that, when used

this way, again good results are obtained with remarkably few terms or iterative
cycles,




Al. INTRODUCTION

The literature of axisymmeiric incompressible potential flow abounds with
numerical methods nf the direct type, in which integral equations arn solved
eventually by matrix methods following some form of discretization. This char-
acteristic traditional path starting from von Karman's [Al] original aumerical
method and arriving at such sophisticated schemes as the higher-order Neumann
method of Hess [A2] has not only spawned no general analytical techniques, but
even very few special solutions. In this context "analytical" will be taken to
mean solutions in terms of known functions,or a sequence of known functions,such
that the convergence and computation of the coefficients allows practically
useful calculations to be carried out to arbitrary order. Thus solutions fer
which only two or three terms can be obtained (e.g., asymptotic series or
matched local expansions, etc.) are not considered to be amalytical in this
sense. his appendix deals with the development of a general analytic method
for axisymmetric flow.

In two dimensions there are analytical methods for isolated bodies (air-
foils), and experience with them has shown that they have certain clear
advantages over the purely numerical schemes — as compensation in a very real
sense fur loss of generality. For instance — they are usually quicker and
more accurate; they frequently provide detailed qualitative insight into far
field or special Tocal behavior (near sharp trailing edges as an example), and
they otten have a much more immediate application to inverse problems. In the
case of isolated airfoils thiz inverse capacity, in whick profiles are designed
for a prescribed velocity distribution, has proved very vaiuable.

One of the most important distinctions between the two dimensional and
axisymmetric cases from a tneoretical point of view is that the former flows
can be treated entirely by complex variable methods including conformal map-
ping; whereas, although the meridian profile of an axisymmetric shape involves
only two variables, the flow field itself is not Laplacian in the potential.
This means, at best, that one could perhaps treat the geometry by mapping
methods; but then a much more sophisticated differential equation would have
to be solved. It seems that this largely explains the almost total lack of 8
analytical methods even though the actual equations of motion appear decep-
tively simple. However, one island in the sea of numerical methods is the work ¢
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o+ Kaplan [A3], who did use a mapping for the geometry and then devised an
iterative scheme for the velocity potential, Unfortunately Kaplan's scheme
rapidiy becomes very complicated so that it is cnly feasible to work out the
first three terms in detail, and quite impossible to program a computer to
calculate higher-order terms automatically,

Nevertheless, the underlying principle of this calculation was a good one,
By using recent advances in appreciation of conformal mapping methods (James
[A4]) it is shown below that a very wide class of bodies can be parameterized
in a very simple way, and that, consequently, analytical solutions can be found
for general axisymmetric shapes by a siightly unexpected series assumption —
for which an indefinite aumber of terms can be computed automatically. From
the examples given it is clear that convergence can be expected to be very
good in general when used to calculate the direct flow about a given body.
However, since this investigation was originally stimulated by recent interest
[A5] in the possibility of a design (inverse) procedure for axisymmetric bodies,
it is even more signiticant that the convergence was also found to be excellent
on the cases tested when the theory was used in the inverse mode,

A2. EQUATIONS OF MOTION

For an axisymmetric body lying ir the (x,y)-plane such that the free-
stream at infinity is parallel to the axis of symmetry (x), the velecity
potential (¢) satisfies the well-known diiferential aquation

with the additional conditions that ¢ ~ x in the far fiela and that the
derivative of ¢ normal to the profile vanishes on the profile. It is quite
standard to seek orihogonal curvilinear transformations x = x(&l, 52).

y= Y(E], 52) in order to either simplify (41) or the profile representation
(thus making the normal derivative condition more tractable). Such a trans-
formation leads to

h h
2 (2,9 Y, 3 (1, 3 ).
T (R]' y as,']> + 3¢, (h‘z'y 352) 0 (A2)




where h] and h2 are the usual metrics, viz.

S RS A % P

However, if the transformation is in particular a conformal mapping from the
g * 152 plane to the x + iy plane then the Cauchy-Riemann equations hold,

that is
1}
9X_ . 9y X . 3y
361 38y 862 351

and therefore hy = h, which reduces (2) to

2,38\, 3 [y ).
aE, (y ag]) * 3L, (y agz) 0 (A3)

Even though (A3) is formally no simpler than{Al) it is possible to find general
mappings which greatly simplify the surface boundary condition by relating the
given profile to one of a number of canonical forms in an auxiiiary (g], 52)
plane. Specifically the class of mappings which map airfoii-like profiles
into the unit circle have been found to be of great utility in two dimensions
and so are considered further for this application.

A3. UNIT CIRCLE MAPPING

According to Riemann's fundamental mapping theorem any profile whose
contour enclioses a singly-connected domain (in the usual engineering sense
of e.g. Woods [A6]) can be mapped into the unit circle. However, for airfoils
* and axisymmetric bodies of interest to engineering, the types of mapping of
sufficient generality and simplicity to be useful are quite constrained. The
role of these constraints has been discussed by James {24 and need not be
‘ elaborated in detail here. Briefly, the desired characteristics are that:
(a) the mapping should reflect the existence of a finite trailing-edge angle
3 discontinufty (= — <), {b) the mapping derivative must - 1 as jz| + =,
| (c) the profile must be closed, and (d) the mapping derivative must have
neither zeros nor singularities on* o~ outside the unit circie.

*In the general theory of mapping methods certain boundary singularities may
arise, but they are not of interest in this application.
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let ¢ = £+ in be the unit circle plane then it is easy to show that a mapping
which conforms to (a) — (d) 1is of the type
l=1/7

g-‘:- = (1 —-:—) g(z) (A4)
where g{c) 1is an analytic function with neither zeros nor singularities out-
side C (the unit circle) and which +1 as |¢| + =. Many different forms of
g(z) can be used to generate profiles, but for the present purpose the more
general representation of g(z) as an expansion

g(c)='|+.(.!.:_lm+_a.§.+

- A (A5)

is appropriate. That the first coefficient a is (1 — t/n) 1is a consequence
of the closure condition (c).

It is possible to prove in general that if the origin in the z-plane is
located at the trailing edge then, as a consequence of (A4) and (AS),

z = c(] —%)2'1/" [1 + a8, (]E) + a8, (-‘;-) + ] (A6)

where 51 S2 ... are polynomials of a particularly simple form. The nature
of these polynomials is not important here since (A6 will not be used directiy;
however, it does show that very awkward fractional powers will arise in the
analysis of the differential equation (A3) through the y factor which is the
imaginary part of z. In order to test the utility of this theory it was first
investigated for the cases which do not give rise to fractional powers, namely

a
r = q {blunt) g%'= g(z) = 1 + —§-+ 3§-+ eee (A7)
9 g .
a |
t =0 (cusp) g-z—= (1-2—)9(c)=(1-——1—)(1+-l—+—g—+...) {(A8)
14

and the remainder of this study deals only with these forms. Fortunately, the .
exclusion of fractional powers is not very important for most engineering
applications, because those bodies of practical interest which are not truly
blunt (1ike ellipsoids) usually have small values of /v for which the rear
stagnation region (where the velocity falls very sharply to zero) is very
localized. Hence, it is of little importance since the boundary layer tends

to “smudge" the details very close to the trailing edge and the question of the
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"proper" combined flow in this region ic an unsolved problem well beyond the
scope of this work.

If the forms in (A7) and (A8) are reorganized and integrated butk yield a

series
B B
. ~1_2_
¥4 C + C c "z ene (Ag)

r
]

where C 1is an arbitrary real constant (again choosing the trailing edge as
the origin of z) and, for:

-~
]

™ (b]unt). B] = azg BZ 33/2. sse

(A10)

= (a3 —-az)/Z, eos

~
1l

0 (cusp), B,

I
—
.
o
~nN
1

Naturally in dealing with the unit circle in the c¢-plane it is expedient to ‘
use the angular variable (w) so that

L= re'?, r = 1 represents the profile

but z is not, of course, an analytic function of r + iw, 50 to circumvent
this it is necessary to use the variable

r = e° where o=+ iu, r=e (A11)
For axisymmetric bodies the reflection symmetry ensures that all the a and

r Bn coefficients are real so that using (AT) in (A9) gives the general form of

y as

’ y(A,w) = e sinw + B]e'A sin w + Bze'ZA sin 2w + ... (n12)

) to be used in the differential equation

(o ) 3 %) o o

with the boundary conditions

¢ eA COS w as A+

¢\ _ -
(3{)- 0 when A =0

(A14)
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Although this is a properly posed problem which has so far defied analytic
solution, the reduction presenied in this section is by no means exhaustive;

it is merely the simplest. Thus the question of convergence has been tacitly
ignored. Experience has snown that this breakdown is adequate for most pur-
poses, but it is clear that when = 0, dz/dz has a higher order zero at

the trailing edge than when + = n, If, then, convergence is adequate for the
blunt cases when using (A9)or (A12)(which effectively disquises the zero factor)
it will be less so for the cusp cases. Furthermore,(A9) shows quite clearly
that one should remove a zerc factor from the expression for z in both cases
for even better convergence. However, it is not possible to consider all

these ramifications here. As will be seen the basic method summarized in (A12),
(A13) and (A14)1is remarkably good and behaves exactly as these conjectures would
lead one tc expect.

A4, SOME REMARKS ON DIFFERENT ITERATIVE SCHEMES

One classical method of solution is to seck a sequence of approximations
‘bo' ¢]. ¢ such that

= 0g t oyt o, * L

and, by substitution into(A13), separate a series of differential equations
each of which can be solved for the individual orders. The number of differ-
ent ways in which this kind of analysis can be effected is quite remarkable,
but the varying forms of the successive n functions and the manner and rate
of their convergence is even more surprising. Since the natural and obvious
assumptions do not work, it would be remiss nét to include some brief discus-
sion of the general character of such schemes.

(a) For instance,(A13) can be expressed in the form

2 -
Yoo+ y, 6, +y o =0 (A15)
or symbolically as
yD¢ + dyds = 0 (A16)

Then by identifying the successive terms of y = Yo + N + ... as
Yo = e sin w, 20 e sin w, Yy = e~ sin 20 ..., and expanding (A16)

45

>




one is led to an array which can be arranged as:

yoDo + yon1 + yODZ + ... + dyod¢o + dyod¢.I + dyod¢2 + ...

yZDo + yle + yzD2 + ...t dy2d¢o + dy2d¢] + dy2d¢2 + ...
(A7)

The simplest scheme which successively annihilates the left hand side of (A17)
appears to be

0

=4
]

<
Q
o
—
"

-dy _d¢
0o (A18)

~¥1Dy — dy,dé; — dy,de,

°‘<
(=

n
L}

and it is worth noting that each equation is of Poisson form and so readily
solvable. Furthermore, although (A18) is not unique in any sense because any
number of known yn's could be appended to the right sides, it is at least
consistent inasmuch as each order does not introduce higher harmonics than
required for the Laplacian part. That is,(A18) could well be solved by the
assumptions

8 = fb(x) COS w, 07 = f](A) coS w, ¢y = fé(x) COS 2w, va.

and, proceeding in this manner with the proper boundary conditions, reacily
leads to

¢o = 2 cosh x cos w
9 = -(1 + 1)e” cos w
¢y = {(1 ++ %-Az)e'x -%-B] [+ ar)e™ + e'BA]} coS w

and rapidly increasing complexity. It is clear that this scheme suffers from
obvious defects, among which the crucial ones are: (1) the analysis increases
rapidly in complexity and still requires solution of nonhomogeneous differ.
ential equations at each step and so cannot be mechanized, (2) the convergence
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in a qualitative sense is poor since 0o has only just introduced a B8
coefficient — merely the first — and varies only as cos w. Part of the
inadequacy of this scheme arises from the fact that each equation of (A18)

has an essentially two-dimensional character so that the "rate of introduction
of axisymmetry" 1s poor.

(b) Kaplan's scheme is much more sophisticated and has an axisymmetric
character in each approximation right from the beginning. It can be represented
in terms of the symbology of (A17) by the sequence

(y, *+ %110, + (dy, + dy,)ds, = 0

(v + %00 + (dy + dy;)de; = -y,D, — dy,de,

(¥o *+ ¥7)0, + (dy, + dy;)de, = -y,0; — y3D, — dy,de,

which certainly penetrates the array faster than (A18). In fact iLhis scheme

not only introduces B2 and cos 2w in 995 but the first term is repre-

sentative of flow around an ellipsoid, not merely an ellipse, and all the left-

slde cperators have a more nearly axisymmetric character, ‘

Unfortunately this improvement in the character of each term has been '
bought at the expense of enmormous increase of complexity. Using separation !
of variables on each equationof (A19) leads to left sides which give rise to
two Legendre equations involving the Legendre functions of both kinds. The
function of second kind (Qn) 1s awkward to handle,and the occurrence of
such combinations in the nonhomogeneous part of each equation leads to
appalling complexity even for the third function ¢3- Thus further terms by
analysis would be effectively impossible and computer mechanization unthink-
able. However, it is interesting to note that, even so, Kaplan's approximation
gave a remarkadbly good answer for a Joukowski profile of revolution. This

provided an important stimulus to the work reported here, and is discussed *
further in paragraph 8 ¢ . Kaplan's method in general also made it clear ]
that iterative/analytic methods of the type discussed above could never lead >

tc general anazlytical solutions unless some means could be found to make each

succeeding order depend only on algebraic steps rather than ones involving <
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differential equations. For algebraic operations there is same hope of computer
mechanization so that the generality criteria of section 1 could then be met;
but where each step still involves partial differential equations there is none.

(¢) The obvious assumption consistent with (a) and (b) above is
o = fo(A) + fl(x) cos w + fz(x) cos 2w + ... (420)

since ¢ must clearly be an even periodic function. However, substituting
this inte (A13) and separating the harmonics leads to an infinite sequence of
equations each of which contains linear differential operators of second order.
Solution of such a system in practical terms seems out of the question, and

its intractable nature arises from the strong coupling between equations — in
the sense that the expression for fn contains all f's for other values of
n. This in turn is a consequence of the addition formulas for trigonometric
products and so cannot be avoided by any assumption of the form (A20).

(d) It appears therefore that (A20) is precisely the wrong kind of
assumption, and of course, the coupling problem arising from (A20) can be
alleviated by using Chebyshev* polynomials instead of trigonometric series,
since then the major algebraic steps reduce to manipulations with power series.
Putting

£ = COS wy n=e

then, the analog nf (A2C) is
¢ = gy(n) +-ay(n)e + 92(“)52 + ... (A21)

which greatly reduces the coupling problem but doesn't solve it. In fact, use
of (A21) leads to a system in which the equation for g, involves 942

which is again undesirable since each differential equaiion cannot be solved
outright in general terms which might conceivably lead to a reduction to
algebraic steps.

*In a quick spot-survey of 16 mathematics textbooks and assorted dictionaries,
the author found 8 different spellings. This was the most popular being quoted
on 37.5% of occasions!
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Examining the reduction to a suitable ¢,n form shows what the proper
procedure should be. Moting that y has factor sin w, (A12), let Y be
defined as

y=siny Y (A22)

where
By
Y(E4n) = n + — +

- (A23)

3 (o]
NS
(=

-
—
Y
~

+
L]

and Un(g) is the Chebyshev poiynomial of second kind, viz.

_sin(n + 1)u
Un(g)_ SIn w

Using (A22) and (A23) in (A13) then gives the transformed differential equation

2 2

Y ir% — e + ¥ o+ (1= €d)W,0, = 0 (h24)

£°¢
with the boundary conditions

¢ =0 when n =1

n (A25)
¢ v gn when n > «

But if (A21) is applied to (A24) it can immediately be seen that the offending

factor which produces a shifting upward of powers is the term (1 —-g2)¢55

coming from transformation of the v2¢. On the other hand the n-part,

"2¢nn + n¢, Ppreserves the same powers in each differential operator.

AS5. THE ASSUMPTION FOR ¢

(a) On the basis of section A4d above, the assumption
- 1 1
¢ = nF (€) + = Fi(g) + z Fple) + ... (A26)

is more logical than (A21).although both (A20) and (A21) appeal more immedi-
ately to intuition. Using (A26) it is possible to produce a system which can
be reduced entirely to programmable algebraic steps. This reduction is
elementary but involved, and only the important stages can be recorded here.

Putting (A26) progressively into (A24) leads to the first step that

2 . 1 1
V¢_E¢£-nAo+;Al +o.ln_nAn+o-o
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where b, is the differential expression

(1 2ven o oepr 4 2
b, = (1 -¢ )F; 2§Fn +n°F 5 on > ]

The temptation to use this as a basis for iteration (as opposed to the use of
the contribution from v2¢ alone) on the grounds that it may introduce non-
two-dimensional effects quicker if one divided (A24) by Y, can be resisted
very easily by noting that the first member would be

- _ .2 _ ' -
By = (1 —-¢ )F; 2r,F0 +F, =0 (A27)
which does not have a solution proportional to £ as it must if (A25) is to

be satisfied.

Continuing the development, we note instead that the product term involv-
ing v2¢ can be reduced in the following way. Write

By . ByY By By
Y=n 1"'—7"‘—'3—""...{:7];]+7+T+---$=n(]+ﬁ)
n n n n

and

oo =l #2010 s+
¢ €¢E T\O ;2‘ :.3'00. —n(o A)

say, so that the product becomes
2 o2 _ 2
Y {v% — o } = n"(1 + 8)(a) + a) = n"(1 + 8o, + &+ 3)

where the final term g8a s O(n"4). The other two terms in (A24) yield
similar expressions with final products of 0(n'4); in detail, if

B 28
=1 -1 __2 =1—-38
yn_] -> T_..-] B
n n
¢n=F°.__;2_—_nT_...=Fo—F

then

2 _ 2.4 ¥ o2 _ LW
Y 6= 00 —BHF, —F) =t F —BF —~F + BF )
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and, if
8! Bl
1 2
Y =n 3 + -+ .'§L rlB.
£ ;‘2‘ 3
Fi Fé
¢£ = 3F6 M i T ...‘ = n(Fé + F')
n n
then

_ .2 = 201 — Feyrarps rg
(1 - €%)Y¥, 0, = n°(1 ~ £°){B'Fy + 8'F'}
so that ultimately a factor nz can be cancelled and the differential equa-
tion reduced to

(ag +eag + o+ F =W ~F+ (1 —cDarsy + Lo+ B+ (1= cP)p'Fl = 0
(A28)
which can be written for convenience of discussion as

{(H}+[G] =0 (A29)

In this expression the collection G contains only terms of at least G(n'a)
and the collection H starts from order zero., This separation of the higher-
order products turns out to be a very important step, since isolated study of
the dependence of G on the vunctions F_ shows how the whole solution can

n
be reduced to mechanizable aigebraic steons,

(b) However, the structure of G can be appreciated only by first examin-
ing the behavior of H. Interpreting H from (A27) and the definitions of
4]
b8,B,F,F shows that

Hy H,
H= (Ao + FO) + —z-n +;3—+ (A30)
where

- —_— — _52 ] ]
Hn B, nFn * 8,8, Fonsn + (1 —¢ )Fosn (A31)

Since G 1is O(n'4) it follows that the solutions for the first three Fn's
are independent of G and are given by

H =0, H] =0, H, =0 (A32)
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and in particular the first of these according to (A29) and the definition of

8 (A27) yields

2 " ‘ =
(V= £5)Fy — 2¢F) + 2F = 0
This is a Legendre equation of degree 1 with the solutions
Fo = APy (g) + BQ, (&)

where P](a) and Q](g) are the Legrendre polynomials of degree 1 and A, B
are arbitrary constants. In fact,

Pi(e) = &, Q(e) = %—a In (é%{}%—)-—l

and since the second kind [Q](g)] gives a logarithmic singularity at ¢ = +
we set B = 0 on the grounds that ¢ must be a smooth function. Then
choosing A = 1 gives

F0 = ¢, A = -f (A33)

so that the first term of (A26) becomes nt which generates a proper free
stream as n + », as it should according to (A25).

Substituting this back into (A31) shows that H, can be reduced to

- . _ 2 8yo
Hy = &, ~ nF, (n + l)gen + (1 —¢ )Bn

= Ly = Bplln + ey, _q(e) = (1= c2)u! (a0
where Ln is the Legendre differential operator of degree (n — 1),
Ly = (1 = €°)F2 — 26F) + n(n — 1)F, (A34)
Furthermore, the expression { } 1s a well-known identity

(n+ Dev, (&) = (1 - 2z _1(5) = nu (£)
so that, finally

H =1L —-anUn

n n




and therefore the complete sequence of solutions from (A29) must satisfy

L2 = 282U2
L, = 3B,U, — G
3 3°3 3 (A35)
Ln = anUn --Gn
where we have written
G (4]
e .
n n

since, as already noted, G is O(n"4).

(c) With regard to the Gn quantities arising from the higher-order
products it can be seen from (A28) that

G =84 +8F + (1 — e2)a'F*

and each of these products can be expanded into a power series in 1/n by
using the definitions of 3,A etc. to give

n
] 2
Gprz = 2 Br Uy ppany * 10+ 1= Py 4 (0= DD R ) (h36)
r=]

The details of how this can be simplified sufficiently to enable algecraic
computation to be affected for arbitrary n will be considered later (section 9).
For the moment the important feature is that Gn depends only on Fn-2' L
etc., so the only coupling is to functions already known from previous lower
orders — which is, of course, the vital point of contrast to all the other
iterative/analytical methods discussed in Sectiosn 4.

Now the general solution of L =0 which remains finite at ¢ = +1 s

ann_] (5)
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where an 1s an arbitrary constant. Furthermore, a particular solution of

L, = anUn(E)
1s
Fy = =BTy (e)

since
2 =
\ (1" —-¢ )T; —-ZETA + n(n —-l)Tn = -nUn

where Tn(g) is the Chebyshev polynomial of first kind
Tn(s) = €0S Nuw

Thus FJ%APAZ are polynomials in ¢ and so, therefore, is G3 according to
(A36). However, it is not necessarily obvious that every Fn is ;pereby 2
polyncmial since F3 involves the particular solution for a right side (63)
which is (essentially) an arbitrary polynomial rather than a special Hm.
But the highest degree in 63 is 1 so we could represent the problem for
F3 as

Ly = 3B3U3 — pys py = At + B (say)

to emphasize this aspect. A particular solution for

Ly = P;s F3 = q (say)
is q = (1/74)Ac + (1/6)B which is stil) of degree 1 only. The highest degree
r in 64 is 52. but now we know that the inighest degree in 65 is still

' only 53 because the solution for F3 did not increase the degree of Ppe

Proceeding in this manner it is clear that if a particular solution q,_»
} can be found for the equation

Ln = Pp.2

where p_, 1is at most of deg:ee 5"'2

of degree <n.

then every Fn will be a polynomial




(d) To see that this is the case, consider the superposition of solutions
of

Ly(a) = ™! (A36)

where q 1{s assumed to be a power series
q=qy *+ Qe+ qzcz LI (437)

which may or may not terminate*. Operating on (A37) with Ln’ and equating
£ coefficients gives the system of equations

(N — Z.I)q2 +3.2q, =0
N=n{n-1) (A38)

{N —m(m-—])}qm + m{m + l)cam,.,2 =

whose solution depends on the value of m in relation to n.

If m=n then q, can be found from (A38) and therefore all the
righer coefficients displaced by two. There is no way to find the coefficients
displaced by one, nor those for m, m-2, m-4, .... However, since we are only
interested in finding any special solution these can be taken as zero and the
recursive computation of Un+4°® It - provides a satisfactory procedure —
except for the fact that this sequence does not terminate.

Evidentiy 1f m > n all coefficients up t¢ m + 2 must again be taken
as zero with the same consequences.

Fortunately, the case for m < n 1is different since Qpep = 0 and we
may take all powers n, n-2, ... as zero until m f{s reached, Therefore,
the recursive sequence starts with A and descends, viz.

*The choice of numbering in the coefficients may appear a little unusual, but
this particular system will be used frequently since it is consistent with
the computer numbering and numerical steps.
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I = W =—mm =T177

c ( *-Zgim —-l;
In-2 N-—(m-— m - I

{A39)

until qy or q, is reached.

Thus it is possible to obtain a special solution to (A36) which is a poly-
romial of degree m — 1 provided i does not exceed n — 1. As can be seen
from section ¢, this is just the case required where the polynomial on the right
(pn-Z) is of degree at most n — 2.

Therefore, we have established inductively that:

1. Gn = Pp2 is of degree at most n — 2

2. 2 is of degree at most n — 2

3. Fn is always a polynomial of degree at most n

On this basis it is more convenient tu use the p,q notation and write the
system of equations (A35) as

= B,U

Ly = B4

L, = 28,0,

Ly = 3B,U3 —p, (A40)
Ly anUn ~ Pp.2

The solution of this system is, according to section ¢, and the above
discussion,

Fq = o3P (€) — BT, (¢)

Fz = CLZP](E) - BZTZ(E)

F3 = 03P2(5) - B3T3(C) - q](ﬁ) (A41)
Fn = @pfnoq(8) — BT, {5) —q, _5(¢)

¢ a2 e
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A1l of these are elementary polynomials and the only items standing in the way
of a general automatic computation scheme are the details of the Pp* 9
calculations and the manner in which the boundary conditions must be satisfied
in order to determine the constants .
Both of these items together with the general behavior of the sclution
can be clarified by a brief examination of the first few approximations.

A6, STRUCTURE OF THE FIRST FEW TERMS

(a) Having seen that % = nF° gives a free stream, it is instruc-
tive to see next what the inclusion of the next two terms yields since these
are still independent of any p +~ q operations. Let M denote the approxi-
mation up to F] so that

9 = 0L + %‘(a1 - Blﬁ) = ncos w+ %‘(“] — By cos w)

from (A41). Then
( ) = -ay + (1 + B]) cos w

3
LIRS |

and it is clear that there is no choice of oy which makes this vanish for
all w wunless it happens that B] =1, Bp=0(n>1), In that case if
a = 0 the mapping represents a zero thickness (plate) profile parallel to
the stream direction,

Taking the next term

bp = nE + = [ay =BT (e)] + -‘:z Lape — B,T,(c)]

By , %2 B .
-n-cx-l +(n—;—-+n7-)cos w—?COS 2w

so that

)
Bn n=]

= .o+ 1+ B, —-202) cos w — 282 cos 2w




It is impossible to choose o and %y to make this vanish for all
unless B, = 0. If B, is zero, then the choice

ay = 0
gfves
( B] 1+ Bl) (A42)
¢y = fn —— + —g— ] €0S w A42
2 n 2‘1
The case of ellipsoids is considered in more detail in the next section, but

at this point it is worth noting that if every B, =0 (including B]) the
mapping generates a circular profile and under these circumstances

] 1
¢ = {n + CoS w = fr + COoSw
2 () m (0 )

which is the correct potential for a sphere.

For any other body %o is an approximation. It is not correct for an
ellipsoid when B] # 0 even though every other Bn is zero for such a body.
It is this curious feature that makes the ellipsoids worth further study in
their own right. If B2 # 0 then 69 is a poor approximation in general
because the boundary condition will be in error in the cos 2w term,

(b) Since it is not difficult to work out P and Py by hand we next
consider g Leaving out the details, the calculated values of Py and Py
obtained from (A36) and F]. Fz are:

Py = 2Bays Py = (48102 + 682°l)5
and then the procedure of section 5d gives
By 1
9 =5 Ay = 5 (2Byay + 3By )e
so that the whole solution for 9 is
b0y = nE + & (aP —B,Ty) + L (a,Py —B,T.) + 1 (P-BT—Q'B') *
4 " n ‘*1o M ?“21 2'2 ';5“32 33T 3
1 ]
+ _nT (a4P3 ~ ByT, — ¢ [2Bja, + 3320135) (A43)
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Putting the Legendre polynomials in terms of cos nu and applying the boundary
condition then gives for each frequency in decreasing order

5 -
— 5 oy + 383 0
9 -
Ad4
3 4
— 3 + B, — =0
7 Sk B et T

with, as before, the understanding that the cos 4w term cannot be accounted
for. The first two equations give inmediate solutions

= 6 = 8
ag = ¥ By a3 =g B,
and then the last two reduce to the 2 x 2 matrix

3(B] - l)a] = 282
which can be solved as
2 B
] 882
ay = m 9B, + T—:_—BT— 5(1 + B]) (A45)

This shows that the &, coefficients will not in general depend linearly on
the Bn coefficients,and that some kind of small matrix solution will be
required for higher-order tems. In fact, the algebra up to the 4 x 4

matrix solution was carried out by hand, but only a few key points are recorded
for use in the next section.

The structure of %% itself in tems of Fn’ is clear enough from the
basic formula (A26) together with (A41). Expressions for 9; and q, have >
already been given and the results for 93 and q, follow from the calcula-
tion of P3 and P4 through (A36) and the procedure of section 5d. The
results are:
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- 2. - .3
q3 co + CZE H Q4 D]E * Dau,

where
. 2
CO =10 [3OB~|<!3 - 48202 + (288] + 4483)a]]

< )
. 108 .2
312
| R (10034 + 32 3182).;]]

Satisfaction of the boundary condition on the surface leads to six equations

for the six %, constants which again brezx down into two explicit formulas
for ag and ags viz.

5 x 128 _ 4 x 64
% = §x 63 °5° % " 5% 3% B4 (A47)

and 4 simultaneous equations for G1s T Ggs Op

2y _
a3(7581 —105) + a2(27082) + a1(l40 ~ 1408, —-18083 + 14081) = -14484

. (A48)
a4(6081 —90) + a3(6382) + a2(7283) ¥ u](12OB4) = 10085 —-10883

aa(42031 - 63) + a3(130582) + 02C43 + a]C44 = 100085 - 420(1 + B])
where the two coefficients C43 and 044 are

< 2
Cqq = (-840 + 672B, + 18008, — 64887)
Caq = (100882 + 12108, - 18728,32)

These clumsy results are included only for the algebraic arguments of the next
section and for completness in the sense that they are invaluable guides in
working out and checking general automatic computing schemes.
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A7. COMPARISON WITH ELLIPSOID SOLUTIONS

(3a) The reason that it is wortiwhile considering ellipsoids in detail fis,
of course, that they represent the only simple general class of parametrically
varying axisymmetric bodies with exact solutions. Furthermore, there is a
curious feature involved when comparing the classical exact solutions with the
sequence °o'°2-°4 ... developed in the foregoing settions. This arises in the
following way. With all Bn = 0 except B], separation of real and imagin-
ary parts in (A9) and putting A = 0 gives

Xg O —-81) cos w, ys = (1 + 81) sin w

if we choose to take C = 0 and so shift the origin to the usual central
point for ellipses. Thus, keeping the x-axis always aligned with the flow,

semi-major axis = a =

il
-
|
oo
-

semi-minor axis = b

'}
-l
+
[+~
—

showing that -1 g_B] < +1, with B] = 0 giving a circular profile as noted
in section 6b, and -1 E_B] < 0 giving the usual range of thickness ratios
representing "ovary" ellipsoids. Now it is apparent that the foregcing theory
gives Spdody oo- directly in terms of B] irrespective of whether B] is

> or < 0. However, the classical results (e.g., Milne-Thomson [A7]) show
that the analytical form of soiution is different according as a > b or

a <b, i.e., according as B] <0 or B] > 0,

This situation can be clarified by "expanding" the classical solutions in
some way and showing that the expansions so obtained agree with 950294 o1+
irrespective of the sign of B,.

(b) The classical solutions can be expressed by means of elliptic coord-
inates as follows:

o When a>b (-1 <By <0) put By = -2 and write v = cosh (A + u), ¢
Yo = cosh u then ]
. 2 ‘
- 2 In + ] =11 =1
¢'28uc05mzy- A L — i

"y * Yo Yo/ \Yo ¢
(h49) *1
l
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o When a<b (1>8,>0) put B, =e and write o = sinh (» + u),

9 © sinh u then

-1
s = 267" cos o Jo — —ko tan (1/o) —L} (A50)

[tan™' (1/o,) — o /(g + 1)]

A reasonable supposition is that if (A49) and (A50) are capable of
yielding expansions which can be matched to 90 v Bg oo then the case of
large A should be the one to examine. The first term of (A49) is

-2y

- + -l -
e (@™ ¢ e M) cos w = (e! +e eA)COSwﬂ(n—T{l)COSm

in the earlier notation. Thus, temporarily denoting the constant in (A49) by
h we have

= cos m[(n-——~ —h -}ln —1)]

If A and . are both taken as large then X + u 1is large and it is natural
toput ¢ = e'(”“) and find the expansion for small e. The termm in ) +

is then expressible as

%1"{%—-—1*%(%—+ e) 1n(1]|—:—€-)—1'»-3-e +T5t-:44'-}§-e64'...

or, since ez = e~2Me=2 o -B,/nz.

2 3
. B, a8, , e, 1283,
$ = cos w[(n - ) (T—Z' 1-5-—1- -gg--gn - ) (A51)

In order to derive consistent comparisons for individual orders from (AS51) it
is convenient to proceed in a slightly unusual manner because of the appar-
ently very complicated nonlinear dependence of the 94 termms on B]
through the o constants (see e.g. (A43) and (A44) for ¢4 and 04).
Since h is the constant appropriate to an infinite number of terms, it seems
reascnable to argue that one should designate hz. h4, h6 as the constants
appropriate to the orders n'z. n'4, n'6 and then these can be determined by
noting that every order must individually satisfy the surface boundary
condition. This procedure is certainly consistent with the philosophy under-

lying the structure of $ou g9+

62




For instance, on this basis (A51) yields

¢2 = C0S w ( '—';‘—) + hz —3—-:2"] (ASZ)
and then we wmust have
3(1 + B])
Similarly ¢, and ¢g are given by (A51) with
-15(1 + B]) 105(1 + B]) (A54)
h, = H h, = A54
4~ 88,748, =5) § 88, (35 — 288, + 278%)

For the other case (A50) let the constant be denoted by k then

B
¢ = COS w [(n -n—]-)—- k(o tan'] -;';-— 'I)]

and again let € = e (M) oo that

ot Ion s (Lot 2,y 82,8 8 RS,
1—c¢
This time
2 = e g2 - B]/n2

and if this is substituted into the expansion above the same expression as
(A51) results. Since the constants kz. k4, k6 «+« would be chosen by the
same argument it follows that (A51) through (A54) represent the successive
orders of approximation for both cases, thus resolving one aspect of the
curious feature mentioned in section a.

(c) Next it is necessary to show that the ¢ g b of section 6 are
consistent with (A51) through (A54). In the case of ¢9 it is obvious by
inspection on comparing (A42) with (A52). For ¢ Put B,, 83 to zero and
then ay and wy are zero according to (A44). Furthermore, according to L
(A45) ap = 0 and

501 +B-l) >
G )]

a2
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so that if these results are substituted into (A43) the formula for o4
becomes
¢4=COSw (n‘“r)—-ga-]—_'_—-ro—'(—z-—;‘z) (A55)
n n

which can be seen to be identical to (A51) with hy given by (A54).

Finally, for % with all Bn coefficients zero except B], the equa-
tions (A47) and (A48) for the an's reduce to

and
105(1 + 8,)
(210 — 1688, + 162317)

%2

Then the expression for 9% becomes quite simple because a3 and E
simplify to

thus giving
_ ( 31) 1 1 21
(!6-C05w n—n—~ +a2(—-2--—-5-B-|-4-+3-5-B-| *'6') (A57)
n n n

Using the apy given by (A56) in (A57) it is easy to see that this result
agrees with (A51) and (A54) showing that the classical expansions agree with
the algebraically derived approximations 095 G045 9 of this theory for
ellipsoidal bodies.

(d) Finally, the comparisons will be complete if we can show that the
constants h2, h4 and h6 are progressively better approximations to h
and k, the exact constants appropriate to an infinite number of terms.

Denoting e™* by ¢ (smail), the first form of constant from (A49) is
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(/2 1n [ly, + /(g = D1 = Ly )/ (65 = DD

h

]
- - A58
e€[8/3 + (24/5)€° + (48/7)<" ...] (A%8)

which can be written in the forms

h ] (7 + B])
B][8/3 —-(24/5)81 + (48/7)B$ — eee] 81[8/3 —-(32/]5)81 + (72/35)8? ees]
(AS9)
since c2 = e'Z“ = -B,. Progressively including higher-power terms in [ ]
gives
3(1 + B]) 15(1 + B]) 105(1 + B])
hp = —gg— > hy =gt —Tm T M6 " 7
1 1 1 881(35 —-2881 + 27B1)

which are identical to (A53) and (A54). The expansion for k in e s
the same as (A58) except for aiternating signs which give exactly (A59) again
since this time 52 = +B].

Thus both forms of classical formuia give the same expansion for the
constants of each type. Of course the two forms for the classical formulas
result from the same general argument in more general complex variables so
none of this is really very surprising. Nevertheless this topic cannot be
discussed further here. We have shown that ellipsoidal bodies are correctly
represented by the sequence of potentials in this theory. It is more
appropriate to inquire about the convergence of this sequence, and this can
best be discussed in terms of the velocity.

A8. FORMS OF THE VELOCITY

(a) The general theory for ¢ as given in sectionsAl through A7 will be
of little value unless we can be sure that the velocity — and in particular
the surface velocity — can be computed accurately — without problems from the
trailing edge singularity for instance. For the present it is only the
surface velocity (i = 0) which is of interest, and denoting magnitude by 0
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we have from section 3

0.0) = = -ty (3%2;0

In the case of the conformal mapping used here

_ _ |dz
= hy = |8
and on the surface ¢ = eiw so that
dz
- 5| _ ds
h(0) = |\ = &

where s 1is the arc length along the profile measured from the trailing edge
(which is taken as the origin in all general computations). Thus using s as
a subscript for surface value
8¢s/8w
Q Z -
S as;aw
and the need for caution arises from possibie zero values of ds/duv as a
consequence of the assumed forms for the mu.pping derivative [(A7) and (A8)].

(A60)

Setting z = el in (A7) and (A8) gives

ds

. 2
7 (blunt) &= [(l + 2, cos 2w + ...)z )2]]/

(A61)

+ (a2 sin 2w + ...

=
[

)2

0 (cusp) g%-= 2 sin %-[(1 + cos w + a, COS 2w+ ...
1/2
+ {sin w + a, sin 2w + ...)2] (A62)

so that ds/dw does indeed vanish at w =0 when 1 =0. Jt is convenient
to note that (A61) and (A62) can be expressed in terms of the surface modulus
of the g(z) function of section 3 for both cases, that is:

E - lgglw)] if

ds
r: e 2 sin %-]gs(w)l if
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where !gs(w)l is a positive periodic function which has no zeroes or
infinities — as is obvious from (AG1) and (A6Z).

Now the form of ¢ given by (A26) and (A41) has the natural terms con-
sisting of cos nw and powers of & = -0s ». Thes. latter can always be
expressed in tems of cos w, COS 2u ... by using the reverse transtormation
for the Chebyshev polynomial of first kind, so that it is aiways possible to
express ¢ in the form

¢ = Go(n) - G](n) cos w + GZ(") cos 2uw + ...

by a simple reorganization. Consequently,

from which a factor sin w ran be entracted leaving a modulation term which
is a function of the Chebyshev polynomials of second kind. That is,

2 -~ ginu(e,n) (A6)
where
G(Eon) = G](N) + 262(")”1(5) + 363("1)[]2(5) + ... (A65)

so that the velocity from (A60), (A63), (A64) can be written

0 = 51;s“wG 1 if = n (blunt)
a COS g: wG ] if =0 (cusp)

and both of these forms are cormputationally trouble free for all w. As
expected blunt bodies have stagnation points at both ends, whereas a body with
a cusp trailing edge has a finite nonzero velocity at that trailing edge
(v = 0).




(b) For the ellipsoids the results of section 7 can be used to give some
1dea of the maximum velocity convergence. It is interesting to compare the
successive terms with the two-dimensional value which can be denoted as the
zero-th order approximation very conveniently. The complete solution for two
dimensions is,of course,

- ) -
¢0 = (n +~;) €o0S w = 2 cosh A cos w

so that, dropping the now unnecessary "s" subscript, the zero-th order
approximation to surface velocity is

Q, = 5540 G, =2 (A65)

= TE;W» or o

irrespective of the shape. For the order 2, 4, 6 terms on ellipsoids the
G function surface vaiues follow from (A42), (A55), and (A57) leading to
the sequence

G, = 2
G2=(1—B])+%‘(]+Bl)

5 — 2B, (AG6)
6= (1-8)) + 7 (1 *W(F‘—‘Jr:)

2
35 -]481 + 981

35 — 288, + 273?)

GG=(1-B1)+%(1 +B,)<

As an illustration, the case of ellipsoids of fineness ratios a/b = 3/1 and
a/b = 1/3 are given in the table below. Exact values for G are computed
from (A49) and (A50) by setting ) = 0 to give the slightly simplified forms:

-u '-l“
G = de ; By < 0=-e"(a > b)

2 cosh u —-sinhzu In [(cosh y + 1)/(cosh u —1)]

“y
Ze B, > 0 e"2¥ (a < b)

cosh®y tan~' (1/sinh u) — sinh u

i

whilst the values of |gs(m)| at o = /¢ corresponding to the point of
maximum velocity are:




when a‘-g—. bm%— then B, =-—%—; |gs(§-) -g—
when a=%—. b=-g— then B]=+%-; Iqs(%—) w%

The results are sumarized in the table below with the % errors defined as

(approx value — exac! value) x 100
exact value

% error =

Table of G Values and Maximum Yelocities for Various Orders
of Approximation on Two Ellipsoids

Slender E1lipsoid a/b = 3 Blunt E1lipsoid a/b = 1/3
Order | G values ngaés %Qﬁﬁﬁor G Values Va aés % g??ér
0 2.0 1.333333 +18.8 2.0 4.0 +45.8
2 1.75 1.166667 +4.0 1.25 2.5 -8.8
4 1.714286 1.142860 +1.9 1.50 3.0 +9.4
6 1.698431 1.132300 +0.9 1.317568 | 2.635136 -3.9
Exact | 1.682953 1.121970 - 1.377324 2.742648 -

As ar 11lustration not too much should be deduced from thece tabular

values. Perhaps we should just remark here that the signs oscillate for the
excessively blunt case (a/b = 1/3), but not for the more usual type of body
(a/b = 3/1), and that convergence is adequate but not impressive. In
section 9 detailed resuits will be presented for a variety of bodies so
Judgment should be deferred until then.

(c) Before passing onto general computation one other remark concerning
accuracy 1s worth drawing attention to. Naturally the convergence of velocity
is crucially dependent on the convergence of the Bn coefficients. Some idea
of the behavior of these numbers can be gained by brief consideration of the
Joukowski profile case orn which Kaplan (section 4) obtained such good answers
with a scheme essentially sensitive only to 83. A Joukowski profile has the
exact modulating function
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1 d(1 — d)
=
U Ay

(see[Ad]) where d s real for a symmetric case and 0 < d < 1. Therefore,
the expansion ccefficients are

a, = nd™1 — (0 —1)a"; B, = -d" (1 - ¢)?
When |d| s small it is clear that the convergence of the B, numbers is
good. For instance in the case quoted by Kaplan d = 0.15, giving

B] = ~0.7225, 82 = -0.1084, By = -0.01626, 84 = -0,00244

The dominant "ellipsoid-effect" or leading temm is proportional to
1 + 81 = 0.2775 so the amplitude ratio of the first neglected term in Kaplan‘s
calculation would be essentially propertional to

0.00244 1
0.2775° ~ Y00

<

which goes some way toward explaining the satisfactory results obtained with
such limited sensitivity to the infinite sequence of Bn coefficients.

However, it is not difficult to get cases of practical importance in
which the Bn convergence is very much worse than this,as will be seen in
section 10, where test cases for the general solution having deliberately
chosen peculiarities are presented.

A9. GENERAL CALCULATION SCHEME

(a) The overall structure of the general calculation scheme is based on
the sequence of operations already described algebraically in the earlier
sections (5 through 6). The computer program was written in Fortran 1V for
use on the Douglas IBM 370/168 system and can be regarded as proceeding by
the foliowing stages: 1

1. Input Bn coefficients and other data necessary. 4

2. Compute double subscripted arrays for the coefficients of special
polynomial - used (Pn(z). Tn(E). ess)e <
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Fi11 the first three orders F1. Fz. F3 of the solution variables
using the algebraic answers discussed in Section 5b and c. All
solutior polynomials, unlike the special polynomials in 2, are
functions of the %, constants and so must be represented by

3 subscript arrays which store the coefficients. Thus, F, p, 9, v..
are all typically represented as

Fn(g) = Fn'](a) + Fn'z(g)‘l] + o0 t Fn,n+1(5)°'n
where each polynomial F_ 1(g) is of the form

- n
Fn,i(g) - fn,i,] * fn,1,25 MELY fn,i,n+1€

so that the coefficient array fn.i.k requires storage N, N + 1,
M+ 1 if N 1is the highest order desired. Since three subscripted
arrays use a lot of core space,some trouble was taken in the program
to minimize the number of such arrays actually used. The current
version only requires two; but even so a great deal more could be
done to improve the efficiency of this particular version of
program,

Starting with n = § each Fn coefficient array is computed using
(A41) and the p and q functions of order up to n —2. In
addition the p function of next highest order is computed at
this stage and the coefficients stored for future use.

A subroutine computes q coefficients from p coefficients by
using the algorithm of section 5d and these are also stored for
future use as in 4.

When the Fn functions have been computed up to the order desired
(N say), a separate subroutine handles satisfaction of the boundary
conditions by first converting f* to ? such that

n,i,k n,i,k

N n, n, n,
Fi(&) = it fi2™t * i3z oo TnLiunet™n

which is an appreciable simplification at this stage since Tk is
merely cos kw. Using the arguments of section 6, a set of N —2

simultaneous equatinns for the a constants follows, which can be

7
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salved by a simple standard matrix inverse of low order operating
wholly within core.

7. A final subroutine computes and outputs the surface potential and
velocities using the formulas of section 8.

This desciription of the essential steps followed by the program is only
intended as an outline for discussion purposes; but most of the programming
involved in the ommitted details is elementary and does not deserve comment.

However, one aspect of this scheme does deserve brief amplification.

(b) The central operation which includes all the "difficult" part of the
whole theory (essentially all the nonlinear aspects) is the computation of p
from the extant Fn functionsaccording to (A36). It has already been
remarked that not only does the whole theory hinge on the fact that each F
depends (via p) only on previously computed F's, but that also it is
possible to prove that Fn(g) is a polynomial of degree at most n
(section 5c, d). However, the boundary condition procedure can always be
reduced to a matrix inverse of order (N —2) x (N—2) with ay and AN
determined directly, because, in fact, the Pn-2 which effects Fn is
actually only of order n — 2 rather than n — 2,

In section 5¢c it was noted that if the special solutions q were poly-
nomials given a polynomial p of degree at most n — 2, then the validity
of the whole procedure could be proved inductively. That pn(ssn+2) itself
is of degree at most n 1is obvious from (A36), but the additional vanishing
of the highest order term requires a little closer examination. Denoting
n—-2 by m, (A36) can be rewritten

m |
Pm =z L L A L e pL SR | R T, a- Z)U;-lFr;Hl—r} <‘
r=l (A67)
and each major contribution is a product of two polyncmials. A special poly-
nomial product subroutine keeps track of the coefficients for this frequently
used operation, but for the highest order terms alone the answer can be
written down directly. Nevertheless (A67) is not the best form of either the
numerical construction or the algebraic scrutiny. Using the expression for
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Ay in terms of Fn (section 5a), it is easy to reorganize (A67) into

m
P - Z] B, (25 (1= 6200, P * (s D+ 1 =0 gF ] (A68)
r=

which is the form actually used in the program. Furthermore, it is obvious
from the structure of Fn (A41) that the highest order term is always
contributed by -BnTn(g) and so is always
n-1
-2 Bn
Consequently the second part of (A68) contributes to gm the amount

m
m-1
=D BBy D(m 41 = r)2 (A69)
r=1
The highest order term in Ur-lFﬁ+1-r is, by the same reasoning,
B (m+1—p)2™lml

m+l-r

so that the contribution to £" from the first part of (A68) must be

m
m-1
+ Z BB ,i_om+ D(m+1~r)2
r=1

which exactly cancels (A69), showing that the ¢ term in P, vanishes.
Thus the computing scheme can, as explained, make use of this information to
keep the o _-matrix as small as possible. The cases of N=4 and 6 as

n
worked out in section 6b are illustrations of this feature.

A10. SOME EXAMPLES OF DIRECT VELOCITY CALCULATIONS

(a) In order to test the theory a number of profiles were generated by
using a modification of the "pole airfoil" theory reported in[A4]. This pro-
cedure is extremely flexible since poles and zeros of the mapping derivative
can be chosen at will within the unit circle in order to generate bumps and
dimples on the profile. The point of all this is, of course, to provide test
cases of sufficient character to reveal more information about the accuracy
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than can be obtained, for instance, by only using Joukowski profiles. We have
already seen that this can be very misleading (section 8c) and since most
common test shapes are members of this larger class of pole airfoils (profiles)
it is considered to be a useful adjunct to the whole theory.

For the test cases described below the form of dz/dz started out as a
quotient of isolated iinear groups, viz.

dz _ (& ez —¢y) ven (z—cp)
& T-qc-4,) .. t~4d]

where the first factor can be used to generate blunt or cusped shapes — since
the latter is the only allowable example of the singularity being on the
surface; the choice then being

Q.
n
o

¢y = 1,

to give the usual type of cusp.

Otherwise various criteria apply to the choice of Cy» Cos coes
d], dz, ... required to generate specific effects which -need not be explained
here in detail (see[Ad4]), except to note that the generation of extreme surface
convolutions can only be achieved in general by having some lcnl and some
|dn| very close to unity.

Equation (A70) can be expressed as

m
)
ds k
. AL = ] <1
- k
k=1
which is the fundamental pole form where the quantities A, are the pole
strengths. A simple partial fraction program determined these strengths from
(A70), and then (A71) can be used to give an exact formula for the shape. In
addition (A71) lends itself to an immediate expansion which is uniformly
convergent in |z| > 1 since every |dy| < 1, viz.

(A71)

a a
g_z_=1+zl+12.+,., (A72)
4
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where
m

n-1
2 = 2 wh (A73)
kel

These coefficients show that the ultimate rate of convergence is controlied by
the largest ldkl and therefore it follows from the remarks above that
extreme convolutions will have poor convergence. In the context of this work,
of course, everything depends on the significance of the words "extreme" and
"poor." This subject is best left to the examples given below, except to note
in passing that the Bn coefficients used for the theory here are defined
directly from (A72) by integration. Thus

B B
1 2

Z = c+c—._.._7._..'.

¢ g

agreeing with (A9), and s0

a
B, = 2”; n=1, 2, ...

(remembering that a = 0 for ¢losure) which shows that the Bn coefficients
converge faster than the a coefficients.

It should be noted that this system of test cases generates exact shapes
and exact Bn coefficients whose rate of convergence can be controlled and
studied. Clearly this is necessary for the testing phase, but it does not
represent a bias in favor of the current method. Any profile enclosing a
schlict singly-connected domain can be mapped into the unit circlé,and it is
a trivial matter to write such a mapping program and to make the associated
B, coefficients available for input to this theory. In this sense neither
is the special system used here a restriction of generality. A mapping pro-
gram is available for finding these coefficients, but was not used in the
cases described below. This question will be considered further in the dis-

cussion of the inverse {design) mode (secticn 11),

b.). The first figure (Fig.Al) shows what might be described as a very
bland basic case (body 1) in which the profile was a smooth blunt
shape generated by
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¢ - 0.9, ¢, = -0.5

d] =0, d2 = 0,4

The velocity distribution based on only 10 Bn coefficients is shown
compared with the very accurate "higher-order Neumann" method of

Hess [A2). Evidently, agreement is good for a trivial investment of
computer effort because the "hardest" task involved in this theory
for only 10 terms is the inversion of an 8 x 8 matrix*. For the
Neumann run; and output stations of the method of this appendix, 101
points on the half body were used. Of course, the blandness of this
case leads one to suspect that it is particulariy favorable to the
kind of theory advocated here, just as the Joukowski case used by
Kaplan (see section 8c) turned out to be particularly favorable in
that context. In fact, the rate of convergence for this case is
unduly good. At the64th station (very close to the maximum velocity)
the zero-th order approximation (two-dimensional) is 1.520655 and the
succeeding orders are:

Qrder 9
2 1.226915
4 1.227366
6 1.225472
8 1.225760
10 1.225739

showing nrecisely the kind of weighted choice one should avoid in
test cases.

2. However, the results obtained for the second body (Fig. 2) continue
to show excellent agreement even though only 10 terms are used. This
body is a perturbation of the basic case (1) in which a bump was gen-
erated deliberately near the nose — as can be seen from Fig. A2.

The resultant sharp peak in velocity is produced accurately in detail
and appears to be a good demonstration of the excellent convergence
properties of the method.

*There 1s little point in trying to isolate proper computer CPU times from these
runs because they are so small that the figures are largely obscured by vari-
ous accounting and other semjoptional features. For instance, in this run the
CPU time was quoted as 0.011 minutes and the I/0 as 0.044, but velocities of
order 0, 2, 4, 6, 8 and 10 were individually computed and stored which is
typical of many options not always needed.

—_— N .
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3. Body No. 3 is a further perturbation of even more extreme character
(Fig. A3). As can be seen, the velocity shows quite violent response.
to the artificially created bump-dip-bump, but the theory again gives
remarkably good results with only 10 terms when compared with the
higher-order Neumann. Obviously, this case is a still better demon-
stration of the relative insensitivity of the basic method to higher
order Bn convergence. ’

4, The final case is interesting because it shows how a cusp is handled
by the theory. The body is essentially similar to case 2 except that
the Bn sequence terminates at B3 and that there is a cusp. It
can be seen (Fig. A4) that agreement (again with 10 terms) is excel-
lent everywhere except close to the trailing edge. A much greater
number of terms is required to give a good answer in the immediate
locality of the cusp. This is exactly what would be expected on the
grounds of the discussion given at the end of section 2 where it was
pointed out that if the structure of the Bn coefficients gave good
answers for the nonsingular (blunt) case then obviously it would be
less satisfactory for cases where a further zero term should be
extracted.

These cases cannot be considered exhaustive and evidently further work
should be done, particularly for arbitrary bodies where the mapping program
to determine the Bn coefficients is required first. To some extent the
Gesign cases considered next relieve any residual anxiety that perhaps the
above results were subtly (unintentionally) biased in favor of this theory.
Accepted at face value, however, the above results show very clearly the
excellent convergence and economy of the theory.

Al11. DESIGN (INVERSE) OPERATION

(@) As pointed out in Section 1, one of the important advantages of
analytical solutions in engineering is the readiness with which they can
usually be converted to a design (inverse) mode. In the context of airfoil
theory it happens that the design problem, where a desired velocity is given
and an associated shape determined, is both exact mathematically and non- /
iterative. Airfoils designed in this way are those which — in a least '
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squares sense — give velocities "closest" to the desired input and as such
. have recently proven to be of great practical value [A8].

In fact, interest in design methods for axisymmetric flow was one of the
original stimuli for this study, particularly as there was no design procedure
of any kind available at the start of this work except in two dimensions.
However, recently a procedure for designing axisymmetric shapes by simply
iterating a direct (Neumann type) method has finally been perfected by Bristow
[A9] and we are fortunate to be able to compare a few cases of Bristow's method
and the procedure advocated here.

But first a brief description of the inverse mode for the current theory
is needed. Once again theimportant feature is the decoupling of the purely
geometric aspect and the velocity aspect. In two dimensions this decoupling is
complete, whereas for axisymmetric flow the gradient of ¢ still depends on
the Bn coefficients. Thus, unlike the two-dimensional case, the design
procedure for axisymmetric flow is iterative. The steps used in the current
program version are very simiiar in character to those needed to deteimine
the B, coefficients (i.e., the mapping) from a given profile, or to find the
flow about a given (two-dimensional) airfoil. As such they constitute an
iterative scheme belonging to a general class whose convergence and accuracy
properties have excellent precedents from two-dimensional experience. Briefly
the procedure is based upon the central idea that if ds/dw can be found at
a certain stage then the appropriate a, coefficients can be calculated
directly by employing a transformation which is common in two-dimensional
mapping theory. Looking at (A61) and (A62) it might be thought that, given
ds/dw, there is no way to determine the a, coefficients directly, but this
is not the case. The argument by which these coefficients can be determined
is typical of the great power and flexibility of mapping methods and is rarely
appreciated as such.

(b) Briefly, if dz/dc 1is given by series of the forms (A7) and (A8), [
then
1= (blunt) n g%= n g(z) = ¢(z) .
= dz _ _1 = -1
t =0 (cusp) ngr In (1 c) +1ng(z) = In (0 :) + f(z) (
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and in both cases g¢(z) 1is an amalytic function for || > 1 which + 1 as
|z] + ». Thus f(z) 1is an analytic function for |z| > 1 which + 0 as
|z} + » and can be represented by

b b

a
Ledo)er@=deFe.  am
g

In g(z) = 1n (l rot

sl [-1)
ol ng

In a relation of this form the determination of the a, coefficients given
the bn or vice versa is a purely algebraic procedure which is easy to
compute. On the other hand, the connection between the surface values of fS

and g, is f. =1In g SO that if f. = ug + iv, (say) then

u, = 1In g 3 Vg T arg g,

Therefore, using (A63), the first of these gives
u = 1In g% (t = n)

0)

In g%-— n (2 sin —‘zﬂ) (t

from which ug can be calculated. But according to (A74) ug is the real

part of the bn series with real coefficients (for the axisymmetric case -
by symmetry) giving

u

S b] cos w + b2 cos 2w + ... (A75)

where b.I = a] =0 if «
condition (AS5).

T or b] =ay = 1 if 1t =0 due to the closure

Thus it follows that the bn coefficients can be determined directly
by Fourier analysis of ug and therefore the a, coefficients indirectly by
inversion of (A74) as remarked before. In addition, the magnitude of b] is
clearly a measure of "compatibility" at any stac . of the iteration or, in the
particular case of two-dimensional design, a direct measure of the plausibility p
of the desired velocity distribution.*

*The inverse problem is not unique in either two-dimensional or axisymmetric

flow. The best one can expect is some minimum measure of closeness to the

desired input and a Teast squares Fourier criterion has been found very satis- 4
factory in two dimensions (see, e.g. [A8].
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(c) The steps in the iterative design mode for the theory developed here
can then be described in the following terms:

Step 1. Guess a set of Bn coefficients. The runs described below all

Step

Step

Step

use those for body 1 (section 10d) as a starting system.

2. Calculate a¢s/aw by using (A64) and (A65). For this step the
major part of the basic direct program as described in section 9a
is used as a subroutine. Only number 7 is left off.

3. Use (A60) to give ds/dw and hence us(m).
4. Find the bn coefficients from (A75) by Fourier analysis of

us(m) according to section b above. For this step a small Fast
Fourier transform subroutine tailored for ordinary engineering ucage
in Fortran IV was used. (In a modern computer context this has to be
recognized as one of the big advantages of Fourier methods in
general).

Step

5. From the bn coefficients calrulate the a, coefficients and
hence the Bn coefficients which in turn define the new velocity
and associated profile.

and

Limits on convergence were defined by testing the RMS changes in yj, xJ

Qj. Experience has shown that usually velocity is the more sensitive param-

eter and that it is very important not to impose a too stringent requirement

on accuracy. In fact, a limit of 0.001 is quite sufficient for most engineer-
ing purposes and is usually safe. The impertance of adequate caution for itera-
tive procedures of this kind derives from the fact that such schemes very often
contain numerical steps of a very commonplace nature (e.g., interpolations, quad-
ratures, ...) which are in fact much less accurate than the overall theory or
truncation thereof; but which frequently get overlooked. This remark does not,
¢f course, apply to the Fast Fourier Transform routine used here which returns

11 significant digits. However, this particular theory does have a nonlinear
dependence on the Bn coefficients, no scaling on the higher-order contributionrs
(where the roefficients of the Legendre and Chebyshev polynomials become large)
and a very early truncation. These are reasons enough for not overdoing the

converg:nce criterion,
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A12. RESULTS OF INVERSE CALCULATIONS

(a) As an obvious first check the inverse mode was run on all the direct
cases described before (section A10). Convergence was remarkably good again
with only 10 terms, and most of the results cculd not be distinguished from
the input on any reasonably plottable scales. Body 3 was the only one with
sufficient character to be interesting and it was the first one to be run
with direct comparison with the method of Bristow [A9]. Hence it is the only
one worth more discussion here.

In fact, Fig. 5 shows the original exact body and exact velocity (higher-
order Neumann) used for input to the design process. It also shows the results
of 13 cycles of the current thoery compared with 20 cycles of Bristow's method.
From this figure it appears that after 20 cycles the Bristow method still has
a long way to go and that quite small deviations in velocity near the nose are
associated with quite large errors in overall thickness.

On the other hand, the method advocated here is very good after only 13
cycles (with no under-relaxation factor, see section b below). Furthermore,
it is quicker since the CPU times were approximately in the ratio 1:10.

(£) Another case of design operation is shown in Fig.A6. It is particularly
interesting in that it represents a more typical situation in which the designer
inputs the very crude straight line distribution (Fig. A6) knowing full well
that it is impossible in detail, but that it represents the kind of levels and
gradients he requires. This figure shows that after 7 cycles of the current
theory and 20 cycles of Bristow's the desired input is very nearly being
ach.eved. However, it is clear that the two body shapes do differ near the
trailing edge. This is a reflection of the same situation as encountered in
section a above — namely that the Bristow method approach=s more slowly to
the limit, a fact that is made apparent on Fig. A6 by noting the closeness of
the agreement betwean the higher-order Neuamnn answeys for the 7 cycle budy and
the 7-cycle velocities. Once again the CPU times were approximately in the
ratin 1:10,
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Some details about this run are worth noting. Firstly, it should not be
thought that such a close match to the desired input is possible in general.
The case shown is one which was known to be close to a “real" velocity distri-
bution by experimentation. Had the desired initial rise and trailing edge
values been associated with a level of say 1.2 instead of 1.05, then the design
theory would have shown how far from possible such a request was. It would alse
have returned some "closest" match, leaving it up to the designer to use this
information to introduce a compromise. Secondly, the remarkably good converg-
ence shown for the current theory mey not always be achieved in practice.

Fig. A7 shows the behavior of the B] coefficient and RMS y error as functions
of cycle number with and without an under-relaxation parameter of 1/2 whose
need was rather obviously indicated. There are some intuitive grounds for
regarding an "average" as a good choice; but, of course, there is no mathemat-
ical ground for assuming that this value is optimum in any rigorous sense.
Cbviously more experience with the method is desirable. Thirdly, it should be
noted that by ordinary engineering (fluid mechanic) standards, these straight
line irputs are excessively crude having discontinuities in slope and other
features quite uncharacteristic of analytic functions, It is therefore a very
convincing argument in favor of mapping and Fourier analysis methods that they
can treat such unfavorable distributions smoothiy and accurately.

A13. CONCLUSIONS

A theory for the general solution of axisymmetric incompressible potential
flow in terms of analytic functions of elementary type has been presented. For
the cases usually of importance to engineering (blunt and cusp trailing edges)
comparison with existing numerical methods has shown that with only 10 terms
excellent results can be obtained for negligible expenditure of computer time
on bodies with more character than usually encountered. When used in the
design (inverse) mode the method is apparently quite satisfactory being both
quicker and more accurate than the iterative-Neuamnn algorithm of Bristow
which is (as far as is known) the only alternative nonlinear design process
for axisymmetric fiow.

Clearly more work needs to be done to explore the full range of this method,
and, maybe it would be worthwhile studying the solutions for arbitrary
(0 <t <) trailing edge angles. The results so far are certainly ancouraging.
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APPENDIX B
A NUMERICAL STUDY OF SOME OPTIMUM DRAG CONFIGURATIONS IN TWO DIMEMSIONS

B1. INTRODUCTION

As a contribution to the overall investigation of minimum drag bodies of
revolution, certain two-dimensional studies were undertaken. The main purpose
of these was tc gain insight into the possibilities inherent in the mapping
approach to profile definition which, it was felt, might yield a sufficient
injection of analyticity into the whole problem for a genuine variational
analysis to become possible. As a technique for separating geometrical and
flow aspects, conformal mapping is of great importance in two dimensions, and
its value in axisymmetric flow as a simplifying mechanism can be judged by
Appendix A where an analytic method for flow analysis or design cf bnrdies of
revolution is developed ab initio by using unit circle mappirng. At very least
this kind of mapping constrains the allowable form of velocity in such a way as
to focus attention on relatively few parameters characterizing "mode functions"
of the correct type.

Although it would seem that this is a necessary prerequisite for intraduction
of calculus of variations, it was found that in the time available, no concrete
variational approach could be formulated for the axisymmetric case. However,
the two-dimensional pilot studies did, indeed, lead to a number of interesting
results and advances in understanding which can be summarized as follows:

a. A two-dimensional complete variational formulation does appear to be
possible. However, development of the underlying mathematical tech-
niques is insufficient for such a problem to be solved at the present
time. Variational methods using complex variable function theory
appear to be both much more subtle than the conventional real variable
methods and totally unexplored. We shall not, therefore, discuss this
subject further here.

b. It is possible to reduce both the axisymmetric and two-dimensional
problems to mirimization problems involving a definite sequence of
parameters to be chosen such as to minimize certain combinatfons of
integrals.
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c. A very simple computer program was written to find solutions of such
minimization problems, and the two-dimensional applications of this
program under various restricted circumstances led to some interesting
results — not the least of which was the inherent feasibility of this
approach for the unique definition of the minimum drag shape given
enclosed area or volume.

The work described in (b) and (c) was not completed owing to insufficient time,
but the feasibility is adequately illustrated by the results described below.

B2. TWO DIMENSIONAL DRAG INTEGRAL
According to Thwaites [B1] as interpreted by A.M.0. Smith, the drag of a

two-dimensional symmetric shape in wholly turbulent flow can be expressed by
Spence's integral as

p/c /6
Dra -1/5 4. /s
Cr = -————511?— = 2 10.0242SR Qd (= (B1)

where p 1is the half perimeter, ¢ the chord and Q the surface velocity
divided by U_ expressed as a function of arc length s. In this formula the
Reynolds number R 1s based on chord so

R=1Uc/v (B2)
where U_, v have their usual significance. (B1) can also be written
6

P 5/
o, = 2(0.00528°6) | 1 f s (83)
0

where the expression in ( ) is the Blasius formula for a flat plate and the ron-
dimensional group in [ ] is a convenient parameter worth a name, viz,

(o]
f o%ds (R4)
0
2

O =

ID =
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In making comparative geometric studies it is clear that hoth the chord and
free-stream velocity should be kept constant, but(B3) alone is not very useful

as it stands, since I > T so that minimization of Cp. will always yield

the flat plate solution. Alternatives which could conceivably be useful from a
practical engineering standpoint would keep (say) enclosed area, maximum thick-
ness or perimeter constant as well. Some experience with these has shown that
the area constraint produces the most desirable type of optima, and the remainder
of this study is concerned only with drag optima for constant area, chord and
free stream,

As far as the conversion of this to a readily computed form in terms of the
mapping theory is concerned, the area factor must be nondimensionalized in order
that body size should not be an influence, so a sciisible parameter for minimiza-
tion is

= c_ =
Cpp = Cp, X where A = total enclosed area

But the quantity most easily computed is the half area integral which can be
readily expressed by

c
A=2 ./-ydx
0
and then
c
A _1 _ 8
Zy= o [ yx =1, (say) (85)
2¢ ' o
giving from (B3) and (B4)
- “6. LY/ G/6 142 -
CDA (0.0452R ¥« 7 Iy /iy (86)
Finally for reasons of partial comuav!sons wifh other roipits iU ves aecided that
the integrals based on the ramyiete configurstien “kou’d be used, wiich would giva
33
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Cpp, = (0.04528°1/8) 21/6(21)%/6/(21 )7 *

with the purely geometric expression

(21.)5/6 5/6

Fo—X m=2l/30 (87)

) 172 /2 :
(21,) I

) separable as a measure of configuration efficiency. In termms of F then

Cpp = (0.0452r71/8) 21/6 (B8)

and the work described below is concerned with the minimization of F.
B3. MAPPING FORMAT

In Appendix A a fairly complete description of the mapping format required
for transformation of the profile in the z-plane to the unit circle in the
z-plane is given. Although the basic philosophy conceraing constraints on this
mapping function is unchanged for the application here, an appreciable generali-
zation is desirable. Thus the work of Appendix A was restricted to circumstances
under which it was feasible (possible) to work out complete solutions for general
axisymmetric flow, and in fact only blunt noses with either blunt or cusped
trailing edges were actually analyzed.

y As far as the numerical analysis of the integralcs of section B2 are concerned,
however, it is sensible to begin by stating the most general case — that for which
finite angles q and 1, are permitted at both ends of the body. Under these
circumstances the mapping derivative can be written

| dz _ 1M 12 i I

! E';"(]_ )T+ ) [1+E—+?-+ . (B9)
l where

u] = ] —'r-'/n, uz = -*12/77
and
@ =M T
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in order to ensure closure. In addition it can be shown by symmetry that for
profiles representing a body of revolution every 3, coefficient must be real
and, of course, the surface behavior of the derivative is ohtained by setting
g = eim for points on the unit circle. In fact the connection between the
mapping derivative on the surface and the arc length is of central importance,
and follows from the observation that, if subscript "s" denotes surface value,
then

dz dz
S _ s iw s
w—— e a-(-;s— (BIO)
and so
dz dz
ds . S - s
& % o © z*“*""g(a‘c‘s‘) (811)

where s is the profile arc length measured from the trailing edge, and o
is the geometric surface angle (or flow angle).

S

There are a number of different formulas which can be used for the various
integrals arising in sectionB2 which will be very useful in deriving certain
special and exact cases. However, there is very little that can be done with
the fundamental integral

c

=] 4
ID*EJ‘Q(‘S

unlike the chord and area. Thus for this integral we note that the surface
velocity (in twuo dimensions only) can be written

q = 2 sin w
ds/dw
so that
o0 .4
=1 [ &Sl uy, (B12)

¢ 0 (ds/dw)

iw

Putting ¢ = e in B9) and (B11) then gives

H u
g§.= (2 sin.%) 1 (2 cos %) 2 [(1 + a3, cos w + a, COS 20 + ...

+ (a] sin o + a, sin 2y + ...)2]]/2 (B13)

)2
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and the best that can be done with lD is then

™

=1
Ip Cf
o [(1 + a; €os w + a, COS 2u + ...

(2 sin w/2)2" (2 cos w2)4 42 4y
2

2 3/2
+ (a] sin o + az sin 2v + ...)%]

(B12)
So fer no way has been found to avoid direct numerical evalnation of this formula
except in certiin special cases.

Obviously if the necessary number of coefficients is large and the number
of quadrature points must be large for sufficient accuracy, the evaiuation of
(B14)for the many permutations.required to ace the minimum of F could become
a very tedious and costly operation. Therefore, there is a strong incentive to
find both more accurate (specific) quadrature formulas than (say) Simpson's rule,
and methods of evaluation at least for A and c¢ which do not require further
quadratures. The topic of special quadrature formulas is considered later
(sectiorn 9b), but the obvious alternatives for ¢ and A can be derived
immediatcly from (B9) by using the expansion in powers of 1/z valid when

lz| > 1.

Thus by truncating each group in B9 it is a trivial matter to find the
triple product coefficients A_ in the formula

n
A A
dz _ 2,73
az--]"'?";a-"’... (815)

by using the polynomial product subroutine mentioned in Appendix A. Then it is
easy to prove from(B15) that

c=_ii’id=21—A LA R (816)
do 2 3T ® T v
0
and
T A2 A2 A2
A=2fy%2-dw=n('l——Ag-—gl-—?—i-—u—s—-—..) (B17)
0
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both of which may be useful computational formulas provided the convergence 1is
adequate. As will be seen the convergence is quite often poor, but (B16) and
(B17) do have a theoretical interest in certain special cases quite apart from
their general computational promise.

The most general case has not been computed fully since it was not realized
in the early stages of this study that it would be necessary to incorporate an
option providing for finite closure angles at both ends. This feature greatly
increases the program complexity through the poor convergence of the zero
factors

u u

(l—-l—)] and (1+1Z)2
and the associated revised general optimization program has not been properly
tested, although preliminary results have been obtained. This phase is
described further in section B9 where it properly belongs, because most of the
subtleties necessary for the general scheme* were learned from the preliminary
study of special cases. Therefore, it is both easier and more logical to dis-
cuss the special cases first —more or less in the order in which they were
developed.

B4. ELLIPSES

A natural starting point for such optimization studies is the ellipse
profile because its characterization is so simple in terms of the mapping
theory. Furthermore, not only does it appeal to the intuition as a Tow drag
shape, but in fact it was known to have good properties (see e.q., Figure 14
and section 8 1in this report).

In the early stages it was thought that perhaps the ellipse could be
established analytically as the optimum case with a continuous o (as
opposed to trick "fairings"), on the grounds that the ellipse family is the
only blunt ended symmetric class (TI =T, = w) which also has every a
coefficient zero except a,. This conjecture did not turn out to be correct,

*including, of course, the necessity for its introduction at all!
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but it was possible to produce analytic expressions for every phase of the
ellipse study and so give invaluable guidance for accuracy requirements on the
later numerical work.

The essential formulas come from (89) by first setting uy = uy = 0 which
gives

a a
g§_=1+_§+_§+,.. (818)
4 z

as the defining formula for all symmetric blunt-ended bodies. Then the ellipse
family is defined by further putting a3 = 8, = ... = 0 so

a
- 2 . = —— —
a'g' 1+ ;-2- M 4 C + g ) C real

Choosing C = 0 to put the origin at the center and then setting ¢ = el?

gives the surface coordinates as

Xg = (1 —-az) €OS w, Y = (1 + a2) sin w
so that
a = semi-major axis = 1 - ay
b = semi-minor axis = 1 + a,

and the range of a, is -1 < a, < +1, Clearly the 1ikely (slenaer) range of
low drag shapes corresponds to a, < 0 and obvious limiting cases are the
streamwise flat plate (a, = -1) and the circle (a2 = 0).

Now the structure of ds/dw from (B13) is

‘ai% =J‘| + 232 cos 2w + ;g = a2 s‘inzw + b2 coszw

from which it is clear that for the range a, <0 (or b < a) of interest

here, integrands invoiving ds/dw can be expressed in terms of complete elliptic

integrals by choosing the modulus as
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2. _ b2/

k
thus giving the complementary modulus k', where

k' =1 =k = p2ral

as the fineness ratio. Then the perimeter/chord ratio is

and the fundamental ID integral can be written

Y l
Iy = U——*k—ﬁ—)— [(2 - k%)E — 2k'%K]

where E and K are the standard complete elliptic integrals. Since, in
addition,

=T
I, =3 k

these results can be used to calculate the behavior of the comparison factor F
of (B7) with great precision as a function of the fireness ratio k' = b/a.

The 1imiting values behave as expected. Firstly, as k' -+ 0 (k » 1),
IA +~ 0 but K behaves as 1n 4/k'. The 1im1t;ng value of the last term is
nonetheless zero since 1t is multiplied by k'“, Furthermore E(1) =1 so
the limiting value of ID is 1 as it should be according to the definition
(B3) since k' =0 1s the flat plate case.

As k' > 1 the profile tends to circularity and IA + n/8 as it should

according to (B5). Some care is needed with ID as k >0 owing to the k'4
factor, but it turns out that
(2 = ke ~ 2k 2k~ 3T kH + k) .
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giving the limiting value

ID(O) = 3n

which implies that a circular cylinder in turbulent flow has a drag coefficient
(3")5/6 x flat plate of the same chord — provided, of course, that separation is
ignored

In any event Fig.B1 shows the ellipse curve as a function of fineness ratio
(f) with the clearly defined minimum at about f = k' = 0.22. Anticipating
somewhat, it can be seen that this curve has very nearly the lowest minimum of
all those on Fig. BIl.

B5. SOME CUSPED AIRFOILS

No study like this is complete without the Joukowski airfoil. This shape
also offers some hope of complete analytic evaluation, but there are others of
even simpler form. These are all of intrinsic interest because the cusped
trailing edge removes the possible objection that any wholly blunt shape deduced
as an optimum by this integral formulation would always be liable to poor
practical perftormance due to separation.

The Joukowski profile is a member of the more general class known as pole
airfoils which are mentioned in Appendix A and discussed in more detail in [B2].
The single pole airfoil is, strictly speaking, the simplest member of this class
and so will be considered first.

(a) A single pole airfoil is characterized by T 0, Tp =W and

U U L (529)

d being real for the symetric case. The secnnd factor can be expanded to give
the a, coefficients as

_ n=1
a = d




but again (as a check case) a more direct evaluation was used for ID’ only

the area being computed from the series. Thus, instead of exparding (B19) the
modulus of 1 + 1(z —d) can be calculated on the surface and used in (B11) to
give

2 L2
= 2ginl d” + 4() —-d) cos” w/2
dw 211 +d)% = ad cos® w2

so that substituting in (B12) and using the transformation £ = cos w/2 yields

1 3/2
64 (1 + d)2 2 4d
Nl y £ dg
i + a0 d)g

Since the chord is given by

and the thickness by

1 —d

= I+ d) - 2(~2) sin

‘ 1 d/I=T
t=2 (=)

max

computation was straightforward, but ID was evaluated by using a 101 point
Simpson routine on looking at the above formula. The results are shown on
Fig. B1 and clearly exhibit a minimum at about f = 0.2. Somewhat disappoint-
ingly the drag is evidently much greater than for the ellipse.

(b) In the pole format a Joukowski profile takes the form
& (]—7];-)[]+c—3' c(i(] —d(;)] (0<d<1)
z;_-

again with d real. Following the same steps as for the single pole case leads
to

1 3
_ -"—f [0 d)% — 4de?1 e (820)
© 7 [4d° - a(2d - 1)51%/°
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with
_ 4
¢=y3d
- 2d sin mo(l ~— cos wo) e u (1—d + dz) __d] _ d? + d3
1 — 2d cos Wy + d< ’ 0 2d

Again {B20) was evaluated by a 101 point Simpson quadrature, but this time an
exact integration was possible and was carried out. It served to show that
the results obtained by the numerical procedure were quite adequate. The
results are given on Fig. Bl and exhibit a very similar behavior t¢ the single
pole case with a somewhat higher drag.

(c) The final experiment in cusped trailing edges was a single parameter
airfoil which is, in a sense, the cusped analog of the ellipse since it is
defined by all a, = 0 except a, so that

a
g%,= (1 _.%) (1 + %-+ —%) » a, real (B21)
4

On the basis of the kind of argument advanced intuitively for the ellipse,
namely that it should be some kind of optimum since all the higher order modu-
lations due to a, are absent, it might be expected that (B21) would be
superior to both the Joukowski and single pole profiles since they both have
an infinite sequence of a coefficients.

However, some doubt can be cast on this idea immediately because the
modulating g(z) factor in (B21) is

2+ c+a, (c—igy)le—1g,)

g(i) = . Vi
4 4

where
=—1+ — a
DL [
If a, < 1/4 both zeros are real and since no zero can lie outside the unit

circle the overall permissible range of a, is 0 <a, < 1. When the roots
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become complex the profile starts to buige and unlike all the previous cases
the limiting form at a, = 1 has two symmetrically disposed cusps just down-
stream of the leading edge! Consequently, it is clear that (even without
separation) this shape will have very poor drag characteristics for a,
appreciably greater than 1/4,

Forwarned by this argument the numerical result comes as no surprise.

Using
c = 4(1 —-%—az)
t’%/zaz

and the original form of ID (i.e., (B14)) with a Simpson quadrature gives
the curve shown on Fig. Bl. Evidently the characteristics are much worse than
the previous cusped cases, which serves to show very clearly the naiveté of
the conjectures made before about optina coming from having as many a,
coefficients as possible vanish. Further very surorising evidence concerning
this situation is provided by the next section.

B6. INITIAL OPTIMIZATION FOR BLUNT BODIES

The evidence of section B5 lent weight to the idea that the really good
shapes would have fore and aft symmetry. Furthermore, there was at least a
suspicion that the cusp was an undesirable feature quite apart from its
unsymmetrical role in the airfoils studied. Therefore, it was natural to con-
sider the problem of minimizing F only for blunt ended shapes. Under these
circumstances "W Ty =W SO that b = 0, My = 0 and the fundamental
formulas become simplified mainly because then

so that (B16) and (Bi7) could be used directly without undue fears about
convergence. In fact. (B7), (B8), (B14), (B16) and (B17) show that F is a

function only of the a, numbers for blunt ended shapes, and a definite

cut-off for the a, sequence consistent with some optimistic belief about

convergence i1s obviously a necessity for any numerical work.
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On this basis a computer program was written to effect the minimization,
and it can be described very simply as follows:

(a) It was decided that rather than try sophisticated gradient, steepest
descent, etc. methods, a very simple "boxing" procedure to progressively narrow
in on the minimum of F(a], Ays e- an) would be adequate, mainly because of
the conviction that it only needed to be done once in order to isolate the
optimum. This very simple program works by the following steps which depend
only on a subroutine to evaluate F given a set of a, values.

Step 1.

Step 2.

Step 3.

Step 4,

Step 5.

Input an initial guess for the a, values and a starting
step size h.

Increase a, to ay + h, If F has decreased, move on to
a,. If F has increased, try ay - h. If this also gives
an increase, leave ay alone and move on to ay. Continue

this process to a .

After one pass as in step 2, repeat the cycle to see if the
changed values of aps 335 oo have changed the decision
regarding ay. Continue this checking until acomplete pass
does not change F.

Decrease h by a factor of 10 and start again at step 2.

When h has been reduced to desired accuracy, stop.

It can be seen that each completed cycle (end of step 3) means that to within
the current value of h, it is not possible for the program to detect a
further decrease in F, which implies that the local minimum is contained
within a hypercube (box) of volume h". The division of h by 10 each time
is a particularly convenient mode of operation since then each completed cycle

defines another decimal place.

Various runs were tried to test this program using special test functions
of several variables and the direct results already reported for F depending
on only one variable. It was very soon appreciated that high accuracy for the
quadratures was necessary if a large number of terms were to be isolated,
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since the whole process hinges on the detection of a genuine change of F due
to a change of a, as opposed to variations caused by numerical error. This
topic will be discussed later (Section [9); it is sufficient to record here
that 50 - 101 quadrature points were adequate for 20 - 30 a, coefficients
with h as small as 0.00001. For this particular version of the program
further description is not necessary because of the results that it led to

immediately.

Of course, in the case of the ellipse it was not necessary to worry about
accuracy of quadrature formulas since all the necessary calculations were
exact. Under these circumstances it was a trivial exercise to determine the
optimum ellipse by the minimization program and the result when cycled down
to h = 0.0000001 was

a, = -0.6375691, f = t/c = 0.2213225, F = 7.7122530

This is shown on Fig. B2 compared with some other "good" profiles.

(b) The first two serious attempts to find general optima were with 10
and 20 a coefficients. Since the result obtained with the 20 term case was
a repeat of the 10 term with greater accuracy, we shall not discuss the 10
term at all. In fact, both runs were first carried out without the 5/6 power
on ID’ but this only changes the details not the nature of the answers.

First it was observed that as h was decreased through each cycle all the
odd coefficients decreased rapidly which implies very clearly that fore and aft
symmetry is a necessary requirement. After 5 cycles (h ='0.00001) the follow-
ing even coefficients were obtained:

a, = -0.71513
a, = -0.09447
ag = -0.04134
ag = -0.02384
ayy = -0.01567
aj, = =0.01117
aqq = -0.00825
aj = -0.00628 >
ayg = -0.00480
3y, = -0.00349
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It was noted that this body did have a slightly lower F than the best ellipse
by about G.15%, but by far the most striking feature of the coefficients was
their poor convergence. On plotting the shape it was noted that the "bluntness"
was confined to an exceedingly local region near the ends, with the overall
aspect having every appearance of a finite angle wedge ended body. By a very
crude protractor estimate, a i value of about 50° was obtained from the plot
leading to /7 ~ 0.28 or uy = up v 0.72. In view of the leading coefficient
in the above table, the obvious requirement for fore and aft symmetry and the

poor convergence, it was only natural to compare the table values with the
expansion of

(-3 e e

for u = 0.72. The values of these coefficients are

a, = -0.72
a, = -0.7008
ag = ~0.0430
ag = -0.0245
239 = -0.0161
a;, = -0.0115

614 = '0.0087
316 = -0.0068
a-|8 = -0-0055
ay9 = ~0.0045

On comparing the two sets of valuesand remembering that the "minimization"
sequence was truncated and that the estimate for t was very crude, it was
hardly possible to avoid the inference that the minimization procedure was
Teading to a limiting form of sclution described by

u
g{-=(l—%) , b~ 0.72
? 4

inasmuch as such bodies would have finite trailing edge angles and character-
istic rates of convergence as shown above, this discovery was singularly *
unwelcome as well as surprising. It meant, at least, that much mcre serious
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thought would have to be given to the structure of subroutines designed to
evaluate F for use in the minimization program. However, this is once again
best discussed in Section B9, since it is a topic relevant to the most general
program and the important details can, in any case, be best appreciated by
examining the simpler special solutions with finite closure angles first,

B7. CANONICAL WEDGE END PROFILE

If the ellipse can be considered as the canonical blunt end shape on the
grounds that it has only ore a, coefficient, then the class suggested in
Section B6 as the tentative 1imit of the minimization procedure, namely

u

g%(_l?), 0<u<! (B22)
z

can certainly be regarded as the canonical wedge end profile since it has none.

Once again the temptation exists to jump to the conclusion that because there

are no a, coefficients this profile must Le the optimum; but having been

wrong twice before (section B4 and B5c) it is possible to defer judgment on

this issue,

The consequences of (B22) are gquite interesting. Since all the a,
coefficients are zero the expansion of (B22) gives the A, coefficients
immedictely as

po=b(d—y) ... (n=1-4)

n n!

so that

n+1| _n=yu p+ 1 ]
"pFy v 1-=F—+0 (;FT)

and therefore the expansion is uniformly convergent [B3] when |Z| > 1 if

w> 0 or n > T

which covers all cases of interest heve. Hence (B16) and {B17) are apparently .
trivial calculations to give area and chord. Furthermore, from (B10) and (B11)
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P R o NS
95 o+ (2 sin w)¥; 8 =—-3-"—’)
dw ’ s w (?- .

and so '
QS = {2 sin w)T/"

which are all unusually simple.

However, the most important feature is that the drag integral also turns
out to be an analytic result. This can be seen from the combinationof the
above results because

m

m
I =fQ4g%dw =f (2 sin m)3€+'I dw
0 0

where we have used ¢ for +t/m as a convenience SoO

p=1~—c¢

Using ¢ = n/2 — w this can be written as

/2
(cos ¢)
-n/2

3e+l 3e+] do

J = =2

and then by using the expansion* (-n/2 < ¢ < n/2)

cos¥p = —) v +1) 1, v _cos 2¢ + 1___;%3%;;2lﬁ7 cos 4¢ + ...]
2> 1 1L (1/2)v + 11° [+ 5+ Ve

it follows that

[ = r(3c + 2)n

= . =
r[(3e/2) + (3/2))° /e

I

another remarkably simple result. It can be seen that this has the correct
behavior in the 1limits since
a. e=10 gives I = F(Z)w/r(3/2)2 = 4 which is correct for a mapped
flat plate which always has a chord of 4 giving ID = 1.

*This appears in [B3], p. 263, No. 40, It is also uniformly convergent when
e <1 and has the same asymptotic rate of convergence as the An expansion.
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e=1 gives I = P(S)n/r(3)2 = 6r so Ip=3nr since c =2
for the circle which is the correct result according to section B4,

By using these formulas the analytic behavior as recorded on Fig. Bl was easy to
calculate.

However, this calculation served to indicate a rather obvious weakness in
the expanded forms used for the chord and area. In order to determine the chord
accurately a lot of terms had to be used since the convergence of the An
sequence is poor. To some extent this was also true of the area but much less
severe. Thus, a%* a f= t/c ratio of 0.215 it was necessary to use 200 terms
in (B16)!

The subroutine which generated the various formulas was also cycled through
the optimization program described before (section B6a) down to a step size of
h = 0.0000001, and gave the optimum case of this family as

e = 0.3397098, f=t/c = 0.2151623, F = 7.7007989

In this aprlication — as in the straightforward parametric variation to define
the curve of Fig. B1 — the slow convergence was not important since only one
parameter (u or actually c) was being varied, but the implication for
general studies with many parameters were not regarded as very encouraging.
This will be discussed further in section B9. For the moment we merely note
that the optimum member of this family (above) has a wedge half angle of about

0.3397098 x 90 ~ 30.57°

and is shown on Fig. B2. According to section B6a, the value of F is certainly
lower than that of the opti.um ellipse, but the gain is trivial since the CDA
ratio is only 1.0015 (see Fig., B2).

B8. CIRCULAR ARC

Because of the evident importance and different nature of wedge~end
profiles it was decided that at least one other case should be investigated.
It is known that the profiles generated by segments of circles can be analyzed
exactly and in fact the basic solution is given by Milne-Thomson [B4]. However,
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one of the reasons for considering

this case was to compare the known theory

with the mapping format used here — in order to get a better understanding of
the convergence situation., This was considered necessary because section B?
shows how poorly the zero factors converge when expanded naively, but this was
no guarantee that a modulating term containing a, coefficients would not make
the situation worse still. Obviously such information and test cases would be
inportant in designing an overall subroutine suitable for the most general

minimization applications.

Therefore, some detail had to be added to Milne-Thomson's exposition and
this turned out to be very fruitful since an exact formula (no quadratures) was

found for the drag integral. This

case then became the most important test

problem since it had all the features desired for the most general program and

all the relevant formulas exact.

Hence some explanation cannot

be avoided and, whilst circular arc profiles

are a natural aspect of Karman-Trefftz mappings, the coaxial circle method
of Milne-Thomsen is preferrable since it (eventually) suggests the forms which

permit exact evaluation of the 04

integral. EBriefly, the classical procedure

is to start from bipolar coordinates defined in the z = x + iy piane as

sketched, whence

r
]niﬂ.: In 2

Z —a 'rT+i(92-e])

and then denote

p=In=; r= 8y — 035 v =u + iA

so that profiles of constant A are circular arcs. The mapping

then maps the lines -= < u < +o,
shapes consisting of the real axis
be concave or convex from a chosen

a coth ,} v (823)

0 > x> ~2r 1into a connected sequence of
and a piece of circular arc which can either
side.
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(&) There are many ways to get fluid motions into such a system (see e.g.,
Milne-Thomson), but one of the most fruitful is to consider various W -+ v
mappings where

=
/]

¢ + iy = complex potential

In particular the relation

2a
W = =% coth () (B24)
is interesting because separating real and imaginary parts gives

— (2a/m) sin (2)/m)

- . (2a/m) sinh (2u/m
V = Cosh (2u/m) — cos (2x/m) ° ® = Cosh l%u7m) — COS ,2A7m’ (B25)

the first of which vanishes for

Leaving aside some slightly subtle details about branches, it can be shown that
if 0<m<2 then the cases x» =0, r = -mn/2 give flows having the real
axis and one of the above sequence of circular arcs as streamlines.

Although it is not possible to eliminate v directly to give a W(z)
relation in general, the two limiting cases of interest to this work can be
done, viz.

when m

when m=1, w

z (infinite plate along y = 0)
z + a2/z (semicircle)

]
N
-*
£
"

]

and evidently the range of interest is 1 <m < 2,

(b) The compiex velocity is, however, expressible in terms of v for all
cases since

2
_ . _dW _ dWdv _4 sinh® v/2

m- sinh™ v/m

so that the surface velocity magnitude can be written

m




. 4 cosh p — 1 2 2
Q me (cosﬁ 2u/m — l) ’ x>a

(B26)

(cosh u_— COS mn/Z) , -a<x <+

N '%? cosh 2u/m + 1
which are reasonable enough formulas in terms of the parameter u. However,

to relate these tn the unit circle plane contained in ¢ = ¢ + in it is neces-
sary to find a mapping which maps the unit semicircle into one of the segments
and has the same distant regions. Evidently a mapping of the same kind as
(B23) must suffice, and by considering, therefore

= v
¢t = c coth o
it is easy to show that the choice n =2m, ¢ =1 1is required giving

\)/ff!z,‘;""l
c— 1

¢ = coth %’H or e

Comparing this with (B24) and noting that the distant fields match only when
m = 2a gives the relation

zZ+m (r,+‘l)"'; m=2-ec=1+y (B27)

which is the usual Karman-Trefftz form.

By means of (B26) and (B27) the surface velocity can be expressed in terms
of the usual unit circle angular variable since we get

e"/™ = cot 5
and then
1-¢
Qg = i-z— (2 sin w)°© (cos:Zm -%’- + sinM %‘2’- + 2 cos ¢ -;-cos'" g— sin™ %) ‘

which is fine for specific computation of Qs on the profile, but not of much
general use. ¢
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Much more significant is that by using ¢ as the independent variable an
exact form for the basic drag integral can be found. Thus, from (B25) with
A= -mn/2 and m = 2a

= 2. 5inh 2u/m  _ N
® = Cosh Zu/m+ T 2 tanh m
giving
u/m _ +
e’ = if:f% , (-2 < ¢ <2 on the surface)
whilst
p 2 2
= fq4ds - fq“-};-@ - fQ3d¢ (B28)
0 - -2

and Q can be written (with g = cos en/2)

0=y v s @- o+ 2sa - AV (4= A2 (m29)

Substituting (B29) into (B28) and accounting for many symmetries in qroups of
terms gives, finally,*

= - [1"\7 -23—*’")1"(1 + %e_:_) +68r(6 —e)r(2 + ) + 3(1 + 452)1‘(5 —%)r(3 + ;-)

+ 28(3 + 232)r(4)r(4)] (830)

The other quantities needed for direct evaluation are the chord and area. These
are given very simply by

c=m (B31)

and

*It is, again, easy to show that (B30) gives the same correct 1imiting values of
Ip 1in the flat plate and semicircle cases as before, but there is no peint in
giving the details here.




2
A =ml {8 tan e —-s;n e> (B32)
tan 6 sin” @

where o is half the closure angle (o = t/2). Note that for small values of
8, A->0 of 0(s), in fact

A m2 [%-e + %g 93 + 0(95)]

Putting (B30), (B31) and (B32) together, the circular arc curve of Fig.Bl was
produced by completely analytic steps. These formulas were also run through
the minimization program down to h = 0.000000]1 with the.resulting optimum
given as:

e = 0.2693423 (1 ~ 48.50), f = 0.2147540, F = 7.7239339

As can be seen from Fig.Bl the drag characteristics are (slightly) less desir-
able than either the ellipse or canonical wedge end profiles. Fig.B2 shows the
optimum shape compared with the optima of these other two families and also
indicates that the drag ratio of the best circular arc is only 1.0030 x that
of the best overall wedge end case.

(c) However, as pointed out before the greatest value of the circular arc
is as a test case, because it has all the desired features of the general
method. It remains therefore to cast the unit circle mapping (B27) into the
format of this work. Differentiating gives

dz _ 4me (¢ + 1)*(z —1)"

- , sl —e=m=—1
dz [+ 1" = (; —1)"% - "

which can be reorganized to

M

dz 1\ 2m 2 i
= {71 - = (1 —
2 ?){c[(1+l/c)m—(l—1/c)m]: ( ?)"“’

showing that the modulating g(z) part is
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2 -
o) = My [0+ h" = (3= Ly
g

This can be expanded in powers of l/c2 since

. 1 .\m 1\m _ 2m 1 ]
(e g -0 -n-20 (IHZ;:*%;I*"')
where
Zulu =1 < bl =1 —=2)(u —3)
o‘2‘J‘Ta‘!“)" % 51
so that
=2 2
ay % ) 2cx2 (2(14 + 3a2)
g(C) - (] + ?*‘?"‘ o--) = ] - Cz"‘ c4 = eee

These coefficients can be computed to any reasonable order by using existing
subroutines which operate on series and, as expected, g{z) itself does not
converge impressively. For instance, with u = 0.9 (which is certainly part

of a reasonable test range ) the 40th coefficient of (1 + 1/¢z)* 1is 0.00008737
and the 40th coefficient of g(z) is 0.00004556, s0 the rate of convergence is
about the same as for the singular factors. The combined 40th termm is 0.00034836
showing, as anticipated, that product of the poorly convergent singular factors
with the g(z) sequence only makes things worse. A1l this information is
germane to the structure of the general minimization program. This topic is
discussed next,

B9. GENERAL MINIMIZATION PROGRAM

(a) The numerical work described in sections B4 - B9 (Fig.Bd) succeeded
in establishing that the canonical wedge end optimum (section B7) was clearly
the best of all the families and optima considered. However, as remarked before
on a number of occasions (e.g., section B5c) we were loath to jump to the
conclusion that this was the optimumn just hecause of its extreme simplicity.
Not only were such hasty arguments disproved by further calculations before
(e.g., section B5c), but also it should be noted that the circular arc, which
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was introduced merely as a further check case and which has a complicated and
poorly convergent structure in terms of the a, coefficients, nevertheless
gives an optimum very close to the canonical shape. Moreover another factor
had entered the picture at this point., The complex calculus of variations
theory had been completed — admittedly on a very tentative basis. However,
neither the ellipse (special case for t = n) nor the canonical wedge end
profile satisfied the resulting differential equations supposedly defining the
real extremum*. Although not conclusive, this fact together with the above
arguments was sufficient to indicate that further numerical minimization
studies were needed, and that they must encompass the complete system as out-
lined originally in section B3.

As has been noted before the convergence for the series in the general
case is not adequate for them to be used to determine the area and chord.
General operation of the numerical scheme described in section B6a requires
a large number of passes for (say) the determination of 20 - 40 coefficients,
and procedures adequate for only one parameter have to be reconsidered owing
to the computing costs — even though this particular calculation only needs to
be done once in principle. In this context it is also worth noting that if
this is true in two dimensions, it is obviously even more important for the
axisymmetric case,

(b) At first it was hoped that the convergence difficulty could be circum-
navigated by replacing the series for chord and area by quadratures. A new
program was written on this basis using various different numerical methods:

Simpson's rule
Cubic spline fits
Fast Fourier transform fits

to carry out the quadratures. Even using 201 points not one of these was
remotely accurate enough when compared with the circular arc exact solutions
in the region of the various optima.

*No solutions for these equations have been found ab initio partly because of
the speculative nature of their derivatifon, This phase of the work is simply
not developed enough at the time of writing.
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The reason for this failure of the conventional methods to give the kind
of precision necessary for the minimization process tc detect the influence
of higher~order small coefficients is not hard to understand. All of such
conventional methods depend very strongly on the fundamental axiom of classical
numerical analysis - that the data corresponds to a sufficiently smooth (differ-
entiable) function. However, the functions to be integrated here are of the
form (e.g., see (B14)).

[-= { (2 sin 3’-)" (2 cos 1“})" () dow (833)

where f(w) 1is smooth in the desired sense, but
0 <peq <

Thus the singular factors cause a very rapid rise at the ends of the range and
in fact the integrand of (B33) behaves as WP for small «w and so has an
infinite derivative as o + 0.

One way to get around this difficulty is the old (but very important)
artifice of separating the singuiar terms and deing them analytically. A sub-
routine to affect this has been written and tested for integrals of the type
shown in (B33). Its efficacy is staggering as can be seen from the results
tabulated below on a simple test case where the complete answer is known, for
instance f(w) = 1.

(c) The general program using this artifice for numerical quadrature has
not been written but would not be difficult since the subroutines required and
the basic operating process of the minimization part are all available.
However, this program would not just be a repeat of that of section B6a with
more accurate quadrature, since another very important feature for time and
cost saving is that the old program computed the whole integrand each time,
whereas it is obviously only necessary to update one term in (e.g.) the Fourier
expansions each time an a, coefficient {s changed.
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Table Bl. % Error of I for Various Methods When f(w) =1 (101 points)
Case Separation
of
Fast Singularity
Simpson's Cubic Fourier + Simpson's
p q Rule Spline Transform Rule
0.1 0.1 -0.390048958 -0.396812512 -0.45374470 0.000000076
0.2 0.2 -0.224950593 -0.232855499 -0.267544643 0.0006000236
0.3 0.3 -0.127376081 -0.134802905 -0.155229725 0.000000398
0.4 0.4 -0,070438403 -0.076724170 -0.088178328 0.000000521
0.5 0.5 -0.037729564 -0.042441076 -0.048640337 0.000000596
0.6 0.6 -0.019315228 -0.022617007 -0.025747832 0.000000620
0.7 0.7 -0.009221491 -0,011301525 -0.012755969 0.000000602
0.8 0.8 -0.003888859 -0.004997188 -0.005608282 0.000000546
0.9 0.9 -0.001220631 -0.001638814 -0.001845777 0.00C000479
1.0 1.0 0.000000540 0.000002570 0.0 0.0000000417

Since this would not be very difficult or costly it seems that it should
be done if only to give, once and for all, the final optimum — and so define
in a watertight manner the absolute lower limit on CDA- Not only will such
studies not need to be repeated, but engineering compromises could then be
organized on a firm objective basis.

B10. CONCLUSIONS

The studies carried cut as described in sections B4 - B9 lead to the

following straightforward conclusions:

a. A true optimum exists and can be found by a revised, more general
version of the minimization program,

b, There is very little to choose between the class optima of ellipses,
circular arcs and canonical wedge ends.

c. However the canonical wedge end is the best of these and it has "
finite (wedge) angles at the ends.

18




B2.

B3.

B4.

d. [t would not be difficult to construct and rur the general program
(see a) to decide whether or not ¢ 1is the absolute optimum,

e. Since the axisymmetric drag integral is similar, it should be
possible to repeat this procedure using the theecry of Appendix A
and so define an axisymmetric true optimum,
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Figure Bl. Geometric drag comparison factor F based on /area for various
two-dimensionai special cases vs fineness ratio.
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